Two-dimensional XY ferromagnetism above room temperature in Janus monolayer V2XN (X = P, As).

Two-dimensional (2D) XY magnets with easy magnetization planes support the nontrivial topological spin textures whose dissipationless transport is highly desirable for 2D spintronic devices. Here, we predicted that Janus monolayer V2XN (X = P, As) with a square lattice is a 2D-XY ferromagnet using first-principles calculations. Both magnetocrystalline anisotropy and magnetic shape anisotropy favor an in-plane magnetization, leading to an easy magnetization xy-plane in Janus monolayer V2XN. With the help of the Monte Carlo simulations, we observed the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in monolayer V2XN with the transition temperature TBKT being above room temperature. In particular, monolayer V2AsN has a magnetic anisotropy energy (MAE) of 292.0 μeV per V atom and a TBKT of 434 K, which is larger than that of monolayer V2PN. Moreover, a tensile strain of 5% can further improve the TBKT of monolayer V2XN to be above 500 K. Our results indicated that Janus monolayer V2XN (X = P, As) can be candidate materials to realize high-temperature 2D-XY ferromagnetism for spintronics applications.

[1]  E. Santos,et al.  Ultrafast laser-driven topological spin textures on a 2D magnet , 2022, npj Computational Materials.

[2]  Zhuhua Zhang,et al.  Ferroelasticity in Two-Dimensional Tetragonal Materials. , 2022, Physical review letters.

[3]  H. Bai,et al.  Ferroelectric polarization tailored interfacial charge distribution to modify magnetic properties of two-dimensional Janus FeBrI/In2S3 heterostructures , 2022, Applied Physics Letters.

[4]  Jiesu Wang Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer , 2021, Journal of Semiconductors.

[5]  H. Bai,et al.  Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. , 2021, Nanoscale.

[6]  Xu-Xin Cheng,et al.  Intrinsic ferromagnetism with high Curie temperature and strong anisotropy in a ferroelastic VX monolayer (X=P, As) , 2021, Physical Review B.

[7]  H. Bai,et al.  Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain. , 2021, ACS applied materials & interfaces.

[8]  I. Karateev,et al.  Two-Dimensional Magnets beyond the Monolayer Limit. , 2021, ACS nano.

[9]  Yong Li,et al.  The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater , 2021 .

[10]  P. Cui,et al.  Spin-valley coupling in a two-dimensional VSi2N4 monolayer , 2021 .

[11]  C. N. Lau,et al.  Engineering symmetry breaking in 2D layered materials , 2021, Nature Reviews Physics.

[12]  K. Novoselov,et al.  Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3 , 2020, Nature Communications.

[13]  I. Esqueda,et al.  Room‐Temperature Synthesis of 2D Janus Crystals and their Heterostructures , 2020, Advanced materials.

[14]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[15]  I. Karateev,et al.  2D ferromagnetism in europium/graphene bilayers , 2020 .

[16]  G. Duscher,et al.  Low Energy Implantation into Transition Metal Dichalcogenide Monolayers to Form Janus Structures. , 2020, ACS nano.

[17]  Chang-wen Zhang,et al.  Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer. , 2020, Nanoscale.

[18]  Li Yang,et al.  Meron-like topological spin defects in monolayer CrCl3 , 2020, Nature Communications.

[19]  W. Mi,et al.  Spin‐Dependent Electronic Structure and Magnetic Anisotropy of 2D Ferromagnetic Janus Cr2I3X3 (X = Br, Cl) Monolayers , 2019, Advanced Electronic Materials.

[20]  I. Karateev,et al.  Lanthanide f7 metalloxenes – a class of intrinsic 2D ferromagnets , 2019, Materials Horizons.

[21]  H. Qin,et al.  Magnetic switches via electric field in BN nanoribbons , 2019, Applied Surface Science.

[22]  Yihong Wu,et al.  Intrinsic skyrmions in monolayer Janus magnets , 2019, Physical Review B.

[23]  H. Xiang,et al.  Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)3 , 2019, Physical Review B.

[24]  Marcin Ma'zdziarz Comment on ‘The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals’ , 2018, 2D Materials.

[25]  O. Kondratev,et al.  Emerging two-dimensional ferromagnetism in silicene materials , 2018, Nature Communications.

[26]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[27]  A. Kuzubov,et al.  Two-Dimensional Lattices of VN: Emergence of Ferromagnetism and Half-Metallicity on Nanoscale. , 2018, The journal of physical chemistry letters.

[28]  J. Gupta,et al.  Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.

[29]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[30]  Jing Guo,et al.  Two-Dimensional Intrinsic Half-Metals With Large Spin Gaps. , 2017, Nano letters.

[31]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[32]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[33]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[34]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[35]  D. Johnston Magnetic dipole interactions in crystals , 2015, 1505.00498.

[36]  G. Guo,et al.  Half-metallic antiferromagnetic nature of La 2 VTcO 6 and La 2 VCuO 6 from ab initio calculations , 2009 .

[37]  F. Aryasetiawan,et al.  Calculations of Hubbard U from first-principles , 2006, cond-mat/0603138.

[38]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[39]  K.H.J. Buschow,et al.  Physics of Magnetism and Magnetic Materials , 2003 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[42]  E. Ethridge,et al.  Reformulation of the LDA+U method for a local orbital basis , 1996, cond-mat/9611225.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  Tognetti,et al.  Two-dimensional XXZ model on a square lattice: A Monte Carlo simulation. , 1995, Physical review. B, Condensed matter.

[46]  Wysin Instability of in-plane vortices in two-dimensional easy-plane ferromagnets. , 1994, Physical review. B, Condensed matter.

[47]  Wu,et al.  First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. , 1993, Physical review. B, Condensed matter.

[48]  K. Fischer Kosterlitz-Thouless transition in layered high-Tc superconductors , 1993 .

[49]  Gupta,et al.  Critical behavior of the two-dimensional XY model. , 1992, Physical review. B, Condensed matter.

[50]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[51]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[52]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[53]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[54]  Zhuhua Zhang,et al.  Multiferroic vanadium phosphide monolayer with ferromagnetic half-metallicity and topological Dirac states , 2021, Nanoscale Horizons.

[55]  A. Pires,et al.  The two dimensional classical anisotropic Heisenberg ferromagnetic model with nearest- and next-nearest neighbor interactions , 2002 .

[56]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .