Three-dimensional sparse image reconstruction for terahertz surface layer holography with random step frequency.

In this Letter, a sparse image reconstruction approach is proposed for three-dimensional (3D) terahertz (THz) surface layer holography by a sharply dwindled amount of frequency samples, without reducing the high quality of the final reconstructed 3D THz images. To avoid the range ambiguity resulting from the reduction of frequency samples, a random step frequency method is adopted to evaluate the rough range profile of the 3D surface layer. With the obtained range profile, a de-ambiguity procedure is proposed to demodulate the sparse echoed data to greatly compress the maximum nonambiguous range and recover all the information for 3D holography image reconstruction. Proof-of-state experiments are performed in 0.2-THz band. The results verify the effectiveness and the efficiency of the sparse imaging scheme for THz surface layer 3D holography.