Continuous-variable quantum repeater based on quantum scissors and mode multiplexing

Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous variable (CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems compared to their DV counterparts. Yet, repeaters for CV have remained elusive. We present a novel quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of a) two-mode squeezed vacuum (TMSV) CV entanglement sources, b) the quantum scissors operation to perform nondeterministic noiseless linear amplification of lossy TMSV states, c) a layer of switched, mode multiplexing inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement purification that makes DV repeaters work, and d) a non-Gaussian entanglement swap operation. We report our exact results on the rate-loss envelope achieved by the scheme.

[1]  W. Munro,et al.  Comparison of entanglement generation rates between continuous and discrete variable repeaters , 2019 .

[2]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[3]  Saikat Guha,et al.  Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors , 2018, Physical Review A.

[4]  Masoud Ghalaii,et al.  Long-Distance Continuous-Variable Quantum Key Distribution With Quantum Scissors , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Xue Li,et al.  Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory , 2018, Nature Communications.

[6]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.

[7]  Timothy C. Ralph,et al.  Simulation of Gaussian channels via teleportation and error correction of Gaussian states , 2018, Physical Review A.

[8]  Josephine Dias,et al.  Quantum error correction of continuous-variable states with realistic resources , 2017, 1712.02035.

[9]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[10]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[11]  William J. Munro,et al.  Repeaters for continuous-variable quantum communication , 2016, Physical Review A.

[12]  T. Ralph,et al.  Quantum repeaters using continuous-variable teleportation , 2016, 1611.02794.

[13]  J. K. Kalaga,et al.  Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators , 2016, 1611.01334.

[14]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[15]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[16]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[17]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[18]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[19]  S. Pirandola Capacities of repeater-assisted quantum communications , 2016, 1601.00966.

[20]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[21]  N. Gisin,et al.  Towards highly multimode optical quantum memory for quantum repeaters , 2015, 1512.02936.

[22]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[23]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[24]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[26]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[27]  T. Symul,et al.  Theoretical analysis of an ideal noiseless linear amplifier for Einstein–Podolsky–Rosen entanglement distillation , 2014, 1411.0341.

[28]  N. Lutkenhaus,et al.  Gaussian-only regenerative stations cannot act as quantum repeaters , 2014, 1410.0716.

[29]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[30]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[31]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[32]  Zhang Jiang,et al.  Quantum limits on probabilistic amplifiers , 2013, 1304.3901.

[33]  Timothy C. Ralph,et al.  Quantum error correction of continuous-variable states against Gaussian noise , 2011 .

[34]  Jaromir Fiurasek,et al.  Distillation and purification of symmetric entangled Gaussian states , 2010, 1011.0824.

[35]  P. Loock,et al.  Optimal Gaussian entanglement swapping , 2010, 1009.3482.

[36]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[37]  Seth Lloyd,et al.  Reverse coherent information. , 2008, Physical review letters.

[38]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[39]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[40]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[41]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[42]  P. Panangaden,et al.  Distributed Measurement-based Quantum Computation , 2005, QPL.

[43]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[44]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  J. Eisert,et al.  Driving non-Gaussian to Gaussian states with linear optics , 2002, quant-ph/0211173.

[46]  M. Koashi,et al.  Quantum-scissors device for optical state truncation: A proposal for practical realization , 2001, quant-ph/0107048.

[47]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[48]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[49]  Horodecki Unified approach to quantum capacities: towards quantum noisy coding theorem , 2000, Physical review letters.

[50]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[51]  S. Barnett,et al.  OPTICAL STATE TRUNCATION BY PROJECTION SYNTHESIS , 1998 .

[52]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[53]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[54]  Peter Vojtáš,et al.  Mathematical Foundations of Computer Science 2003 , 2003, Lecture Notes in Computer Science.

[55]  Nisan,et al.  Quantum communication , 2018, Principles of Quantum Computation and Information.

[56]  R. Tanas,et al.  Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. , 1994, Physical review. A, Atomic, molecular, and optical physics.