Preparation and thermoelectric properties of AgPbmSbTe2+m alloys

Hydrothermally synthesized AgPbmSbTe2+m (m = 10–18) nanopowders were pressure-less sintered at 450–480 °C for 5 h in Ar. The samples show large positive Seebeck coefficient but low electrical conductivity and the AgPb18SbTe20 sample shows higher power factors. The hot pressed AgPb10SbTe12 sample was highly densified with grain size down to nanoscale, and the sample has inhomogeneous Seebeck coefficient. Obviously different thermoelectric properties have been observed for the AgPb18SbTe20 samples compacted with pressure-less sintering and spark plasma sintering.

[1]  Eckhard Müller,et al.  Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1−x , 2005 .

[2]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[3]  George S. Nolas,et al.  PbTe nanocomposites synthesized from PbTe nanocrystals , 2007 .

[4]  S. J. L. Billinge,et al.  Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2 , 2005 .

[5]  Thermoelectric properties of p-type (AgSbTe2)x(Pb0.5Sn0.5Te)1 − x (x = 0.05, 0.09, 0.2) , 2006 .

[6]  K. Cai,et al.  Hydrothermal synthesis and characterization of silver and antimony co-doped PbSe nanopowders , 2006 .

[7]  Mercouri G Kanatzidis,et al.  Chemical routes to nanocrystalline thermoelectrically relevant AgPb(m)SbTe(m+2) materials. , 2006, Journal of the American Chemical Society.

[8]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[9]  S. Yamanaka,et al.  Electrical properties of Ag1−xPb18SbTe20 (x = 0, 0.1, 0.3) , 2005 .

[10]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[11]  S. Yamanaka,et al.  Thermoelectric properties of Ag1−xPb18SbTe20 (x = 0, 0.1, 0.3) , 2005 .

[12]  S. Yamanaka,et al.  Thermoelectric properties of stoichiometric Ag 1- x Pb 18SbTe 20 ( x = 0, 0.1, 0.2) , 2005 .

[13]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[14]  K. Cai,et al.  Self-Assembly of Te Nanomaterials , 2007 .

[15]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[16]  Jonathan D'Angelo,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[17]  R. Asahi,et al.  First-principles calculations of Ag-Sb nanodot formation in thermoelectric Ag Pb m Sb Te 2 + m ( m = 6 , 14 , 30 ) , 2006 .