Robust skeletonization using the discrete lambda-medial axis

Medial axes and skeletons are notoriously sensitive to contour irregularities. This lack of stability is a serious problem for applications in e.g. shape analysis and recognition. In 2005, Chazal and Lieutier introduced the λ-medial axis as a new concept for computing the medial axis of a shape subject to single parameter filtering. The λ-medial axis is stable under small shape perturbations, as proved by these authors. In this article, a discrete λ-medial axis (DLMA) is introduced and compared with the recently introduced integer medial axis (GIMA). We show that DLMA provides measurably better results than GIMA, with regard to stability and sensibility to rotations. We give efficient algorithms to compute the DLMA, and we also introduce a variant of the DLMA which may be computed in linear-time.

[1]  Harry Blum,et al.  An Associative Machine for Dealing with the Visual Field and Some of Its Biological Implications , 1962 .

[2]  David Coeurjolly Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. (Algorithmic and digital geometry for curve and surface characterization) , 2002 .

[3]  Michel Couprie,et al.  Discrete bisector function and Euclidean skeleton in 2D and 3D , 2007, Image Vis. Comput..

[4]  M. Eden A Two-dimensional Growth Process , 1961 .

[5]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[6]  Luc M. Vincent,et al.  Efficient computation of various types of skeletons , 1991, Medical Imaging.

[7]  Gabriella Sanniti di Baja,et al.  Pruning Discrete and Semiocontinuous Skeletons , 1995, ICIAP.

[8]  Marc Alexa,et al.  Reconstruction with Voronoi centered radial basis functions , 2006, SGP '06.

[9]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[10]  F. Chazal,et al.  The λ-medial axis , 2005 .

[11]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[12]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[13]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[15]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[16]  David Coeurjolly,et al.  d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time , 2003, DGCI.

[17]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[18]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[20]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[21]  Frédéric Chazal,et al.  Normal cone approximation and offset shape isotopy , 2009, Comput. Geom..

[22]  Gilles Bertrand,et al.  New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[24]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[25]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[27]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[28]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Gabriella Sanniti di Baja,et al.  Simplifying curve skeletons in volume images , 2003, Comput. Vis. Image Underst..

[31]  Hugues Talbot,et al.  A Discrete lambda-Medial Axis , 2009, DGCI.

[32]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[33]  Edouard Thiel,et al.  Exact medial axis with euclidean distance , 2005, Image Vis. Comput..

[34]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[35]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[36]  Wim H. Hesselink,et al.  Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform , 2005, ISMM.