Ecotoxicity of manufactured ZnO nanoparticles--a review.

[1]  Sanjay Mathur,et al.  In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity , 2013, Nanotoxicology.

[2]  S. Diamond,et al.  Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum , 2012, Environmental toxicology and chemistry.

[3]  S. Diamond,et al.  Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka , 2012, Environmental toxicology and chemistry.

[4]  Jing Zhang,et al.  Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. , 2012, Environmental science & technology.

[5]  Linhua Hao,et al.  Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. , 2012, Ecotoxicology and environmental safety.

[6]  J. Lead,et al.  Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. , 2012, Environmental science & technology.

[7]  Thilini P. Rupasinghe,et al.  Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  David A. Ladner,et al.  Solubility of nano‐zinc oxide in environmentally and biologically important matrices , 2012, Environmental toxicology and chemistry.

[9]  C. A. V. van Gestel,et al.  Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. , 2011, Environmental pollution.

[10]  Peng Wang,et al.  Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. , 2011, Environment international.

[11]  X. Sima,et al.  Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water. , 2011, Journal of environmental monitoring : JEM.

[12]  G. Francia,et al.  Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms , 2011, Environmental science and pollution research international.

[13]  T. Glenn,et al.  Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. , 2011, Environmental pollution.

[14]  George P Cobb,et al.  Acute effects of Fe₂O₃, TiO₂, ZnO and CuO nanomaterials on Xenopus laevis. , 2011, Chemosphere.

[15]  Thilini P. Rupasinghe,et al.  Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[16]  Wenchao Du,et al.  TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. , 2011, Journal of environmental monitoring : JEM.

[17]  K. Jeyasubramanian,et al.  Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[18]  J. Dutta,et al.  Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water , 2011, Nanotechnology.

[19]  Ranjit T Koodali,et al.  Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Gedanken,et al.  Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury , 2011, Nanotechnology.

[21]  Peter L. Irwin,et al.  Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni , 2011, Applied and Environmental Microbiology.

[22]  George P Cobb,et al.  Effects of ZnO nanomaterials on Xenopus laevis growth and development. , 2011, Ecotoxicology and environmental safety.

[23]  Lizhong Zhu,et al.  Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. , 2011, Environmental science & technology.

[24]  Lutz Mädler,et al.  Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. , 2011, Environmental science & technology.

[25]  Chris D Vulpe,et al.  Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. , 2011, Environmental science & technology.

[26]  Yuan Ge,et al.  Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. , 2011, Environmental science & technology.

[27]  Rakesh Pandey,et al.  Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. , 2011, Journal of biomedical nanotechnology.

[28]  Thomas M Seed,et al.  Acute Effects , 2011 .

[29]  Wei-Chun Chin,et al.  Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton , 2010, Environmental toxicology and chemistry.

[30]  A. Ivask,et al.  Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals , 2010, Analytical and bioanalytical chemistry.

[31]  S. Yun,et al.  Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route , 2010, Applied Microbiology and Biotechnology.

[32]  Wei Bai,et al.  Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism , 2010 .

[33]  Arturo A Keller,et al.  Impacts of metal oxide nanoparticles on marine phytoplankton. , 2010, Environmental science & technology.

[34]  Jing Chen,et al.  Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. , 2010 .

[35]  B. Quinn,et al.  Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[36]  Monika Mortimer,et al.  Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. , 2010, Toxicology.

[37]  A. Kahru,et al.  From ecotoxicology to nanoecotoxicology. , 2010, Toxicology.

[38]  Anita Jemec,et al.  Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. , 2010, Toxicology.

[39]  Si Amar Dahoumane,et al.  ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[40]  K. Linge,et al.  Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish. , 2010, Environmental science & technology.

[41]  Yinjie J. Tang,et al.  Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. , 2010, Environmental science & technology.

[42]  Z. Pan,et al.  "Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures: , 2010 .

[43]  M. Mortimer,et al.  Ecotoxicity of nanoparticles of CuO and ZnO in natural water. , 2010, Environmental pollution.

[44]  Dimitrios Stampoulis,et al.  Assay-dependent phytotoxicity of nanoparticles to plants. , 2009, Environmental science & technology.

[45]  R. Scholz,et al.  Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. , 2009, Environmental science & technology.

[46]  Hao Li,et al.  Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7 , 2009, Journal of applied microbiology.

[47]  Kaja Kasemets,et al.  Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[48]  Robert Landsiedel,et al.  Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. , 2009, Chemosphere.

[49]  Harry Friedmann,et al.  EPR Study of Visible Light-Induced ROS Generation by Nanoparticles of ZnO , 2009 .

[50]  Phillip L Williams,et al.  Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans , 2009, Environmental toxicology and chemistry.

[51]  Xuezhi Zhang,et al.  The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio) , 2009, Nanotechnology.

[52]  Wei Jiang,et al.  Bacterial toxicity comparison between nano- and micro-scaled oxide particles. , 2009, Environmental pollution.

[53]  Baoshan Xing,et al.  Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. , 2009, Environmental pollution.

[54]  Peng Wang,et al.  In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. , 2009, The Science of the total environment.

[55]  Rachel Lubart,et al.  Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS‐Mediated Cell Injury , 2009 .

[56]  K. Kasemets,et al.  Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, The Science of the total environment.

[57]  H. Sue,et al.  Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. , 2009, Journal of food science.

[58]  Xiaoshan Zhu,et al.  Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna , 2009 .

[59]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[60]  Baoshan Xing,et al.  Root uptake and phytotoxicity of ZnO nanoparticles. , 2008, Environmental science & technology.

[61]  Nanna B. Hartmann,et al.  Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi , 2008, Ecotoxicology.

[62]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[63]  Yunqing Kang,et al.  Toxicological effect of ZnO nanoparticles based on bacteria. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[64]  A. Manna,et al.  Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. , 2008, FEMS microbiology letters.

[65]  Yan Li,et al.  Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[66]  Phillip L. Williams,et al.  Spatial distribution and speciation of Au and Zn in terrestrial organisms exposed to Au and ZnO nanoparticles , 2008 .

[67]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[68]  Baoshan Xing,et al.  Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. , 2007, Environmental pollution.

[69]  K. Feris,et al.  Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. , 2007, Applied physics letters.

[70]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[71]  Pedro J J Alvarez,et al.  Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. , 2006, Water research.

[72]  Thomas Kuhlbusch,et al.  Particle and Fibre Toxicology BioMed Central Review The potential risks of nanomaterials: a review carried out for ECETOC , 2006 .

[73]  M. Benedetti,et al.  Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. , 2006, Nano letters.

[74]  Robert N Grass,et al.  In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. , 2006, Environmental science & technology.

[75]  Karluss Thomas,et al.  Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[76]  G. Oskam Metal oxide nanoparticles: synthesis, characterization and application , 2006 .

[77]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[78]  Hiroaki Imai,et al.  Growth conditions for wurtzite zinc oxide films in aqueous solutions , 2002 .

[79]  G. Ankley,et al.  Assessment of the risk of solar ultraviolet radiation to amphibians. III. Prediction of impacts in selected northern midwestern wetlands. , 2002, Environmental science & technology.

[80]  O. Yamamoto,et al.  Influence of particle size on the antibacterial activity of zinc oxide , 2001 .

[81]  O. Yamamoto,et al.  Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution , 2000 .

[82]  T. Ternes,et al.  Pharmaceuticals and personal care products in the environment: agents of subtle change? , 1999, Environmental health perspectives.

[83]  Eric A. Meulenkamp,et al.  Size Dependence of the Dissolution of ZnO Nanoparticles , 1998 .

[84]  J. Sawai,et al.  Hydrogen Peroxide as an Antibacterial Factor in Zinc Oxide Powder Slurry , 1998 .

[85]  Hideo Igarashi,et al.  Effect of Particle-Size and Heating Temperature of Ceramic Powders on Antibacterial Activity of Their Slurries , 1996 .

[86]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .