Preparation and sintering of nanosized α-Al2O3 powder

Abstract Results of highly intensive mechanical comminution of α-Al2O3 in planetary ball mill with the use of a substance preventing the formation of hard aggregates and growth of crystallites are presented. Depending on experimental conditions mean size of the ground particles ranged from 18 to 40nm., findings of different methods of particle size determination being consistent with each other. The powders exhibit unexpectedly good formability allowing to achieve 60–65% green density by simple uniaxial dry pressing. Compacts made of the powder show enhanced sintering kinetics resulting in dense material with fine microstructure at low temperatures.

[1]  A. Mukherjee,et al.  Nanocrystalline Alumina by High Pressure Sintering , 1996 .

[2]  S. Hayashi,et al.  Mechanochemical effect for some Al2O3 powders by attrition milling , 1993 .

[3]  Frederick F. Lange,et al.  Sinterability of Agglomerated Powders , 1984 .

[4]  S. Bhaduri,et al.  Auto ignition processing of nanocrystalline α-Al2O3 , 1996 .

[5]  S. Risbud,et al.  Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder , 1998 .

[6]  A. Mukherjee,et al.  Rapid Consolidation of Nanophase Al 2 O 3 and an Al 2 O 3 /Al 2 TiO 5 Composite , 1996 .

[7]  R. Averback,et al.  Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness , 1990 .

[8]  R. Bradt,et al.  Microhardness of a Fine‐Grain‐Size Al2O3 , 1979 .

[9]  M. Sacks,et al.  Low‐Temperature Sintering of Aluminum Oxide , 1988 .

[10]  J. S. Reed,et al.  Principles of ceramics processing , 1995 .

[11]  J. Halloran,et al.  Alpha Alumina Formation in Alum‐Derived Gamma Alumina , 1982 .

[12]  W. H. Rhodes,et al.  Agglomerate and Particle Size Effects on Sintering Yttria‐Stabilized Zirconia , 1981 .

[13]  Jianlin Shi,et al.  Sintering Behavior of Fully Agglomerated Zirconia Compacts , 1991 .

[14]  G. Messing,et al.  Enhanced Densification of Boehrmte Sol-Gels by α-Alumina Seeding , 1984 .

[15]  H. Hahn Microstructure and properties of nanostructured oxides , 1993 .

[16]  D. Yan,et al.  Effect of agglomerates in ZrO2 powder compacts on microstructural development , 1993 .

[17]  S. Sakaguchi,et al.  Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals , 1986 .

[18]  J. Halloran,et al.  Influence of Aggregates on Sintering , 1984 .

[19]  G. Messing,et al.  Controlled Transformation and Sintering of a Boehmite Sol‐Gel by α‐Alumina Seeding , 1985 .

[20]  H. Bowen,et al.  Effects of Organic Dispersants on the Dispersion, Packing, and Sintering of Alumina , 1991 .

[21]  L. Kulinsky,et al.  Effects of Titanium Doping on Surface Properties of Alumina , 1994 .

[22]  V. Boldyrev,et al.  Structural and morphological changes during the mechanical activation of nano-size particles , 1995 .

[23]  G. Messing,et al.  Seeding with γ‐Alumina for Transformation and Microstructure Control in Boehmite‐Derived α‐Alumina , 1986 .

[24]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[25]  A. Mukherjee,et al.  Plasma activated sintering of nanocrystalline γ-Al2O3 , 1995 .

[26]  D. Hasselman,et al.  Synergetic Pressure‐Sintering of Al2O3 , 1972 .

[27]  M. Mayo,et al.  Densification and grain growth of ultrafine 3 mol % Y2O3ZrO2 ceramics , 1993 .