BCCB complex Hadamard matrices of order 9, and MUBs

Abstract A new type of complex Hadamard matrices of order 9 are constructed. The studied matrices are symmetric, block circulant with circulant blocks ( B C C B ) and form an until now unknown non-reducible and non-affine two-parameter orbit. Several suborbits are identified, including a one-parameter intersection with the Fourier orbit F 9 ( 4 ) . The defect of this new type of Hadamard matrices is observed to vary, from a generic value 2 to the anomalous values 4 and 10 for some sub-orbits, and to 12 and 16 for some single matrices. The latter matrices are shown to be related to complete sets of MUBs in dimension 9.

[1]  R. Feldman Construction , 2004, SP-110: Hyperbolic Paraboloid Shells.

[2]  Kyle Beauchamp,et al.  Orthogonal maximal abelian *-subalgebras of the 6×6 matrices , 2006 .

[3]  P. K. Aravind Solution to the King’s Problem in Prime Power Dimensions , 2002 .

[4]  S. Chaturvedi,et al.  Aspects of mutually unbiased bases in odd-prime-power dimensions , 2001, quant-ph/0109003.

[5]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[6]  B. Karlsson,et al.  H-2-reducible complex Hadamard matrices of order 6 , 2011 .

[7]  Ferenc Szöllősi Construction, classification and parametrization of complex Hadamard matrices , 2011 .

[8]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[9]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[10]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[11]  Ferenc SzollHosi,et al.  A two-parameter family of complex Hadamard matrices of order 6 induced by hypocycloids , 2008 .

[12]  A. Zeilinger,et al.  Entanglement in mutually unbiased bases , 2011, 1102.2080.

[13]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[14]  Ferenc Szöllösi,et al.  Towards a Classification of 6 × 6 Complex Hadamard Matrices , 2008, Open Syst. Inf. Dyn..

[15]  Wojciech T. Bruzda,et al.  Mutually unbiased bases and Hadamard matrices of order six , 2007 .

[16]  L. Sánchez-Soto,et al.  Multicomplementary operators via finite Fourier transform , 2004, quant-ph/0410155.

[17]  J. Faugère Finding all the Solutions of Cyclic 9 using Gröbner Basis Techniques , 2001 .

[18]  Bengt R. Karlsson Three-parameter complex Hadamard matrices of order 6 , 2010 .

[19]  Uffe Haagerup,et al.  Orthogonal Maximal Abelian *-Subalgebras of the N×n Matrices and Cyclic N-Roots , 1995 .

[20]  Ferenc Szöllősi,et al.  Complex Hadamard matrices of order 6: a four‐parameter family , 2012 .

[21]  Stefan Weigert,et al.  Isolated Hadamard matrices from mutually unbiased product bases , 2012, 1208.1057.

[22]  M. Combescure,et al.  Block-circulant matrices with circulant blocks, Weil sums, and mutually unbiased bases. II. The prime power case , 2007, 0710.5643.

[23]  G. Björck,et al.  A Faster Way to Count the Solution of Inhomogeneous Systems of Algebraic Equations, with Applications to Cyclic n-Roots , 1991, J. Symb. Comput..

[24]  B. Karlsson Two-parameter complex Hadamard matrices for N=6 , 2009, 0908.2555.