Energy image density property and the lent particle method for Poisson measures

[1]  D. Applebaum Universal Malliavin Calculus in Fock and L\'{e}vy-It\^{o} Spaces , 2008, 0808.2593.

[2]  N. Bouleau Error calculus and regularity of Poisson functionals: the lent particle method , 2008, 0809.0382.

[3]  J. Picard Brownian excursions, stochastic integrals, and representation of Wiener functionals , 2006 .

[4]  Yasushi Ishikawa,et al.  Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps , 2006 .

[5]  M. Rockner,et al.  The semigroup of the Glauber dynamics of a continuous system of free particles , 2004, math/0407359.

[6]  Nicolas Bouleau,et al.  Error Calculus for Finance and Physics: The Language of Dirichlet Forms , 2003 .

[7]  L. Denis A criterion of density for solutions of Poisson-driven SDEs , 2000 .

[8]  Zhi-Ming Ma,et al.  Construction of diffusions on configuration spaces , 2000 .

[9]  Nicolas Privault A pointwise equivalence of gradients on configuration spaces , 1998 .

[10]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[11]  G. Rota,et al.  STOCHASTIC INTEGRALS: A COMBINATORIAL APPROACH , 1997 .

[12]  Jean Picard,et al.  On the existence of smooth densities for jump processes , 1996 .

[13]  J. Norris Dirichlet Forms and Analysis on Wiener Space , 1993 .

[14]  Shiqi Song Admissible vectors and their associated Dirichlet forms , 1992 .

[15]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[16]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[17]  M. Röckner,et al.  Dirichlet forms on topological vector spaces: closability and a Cameron-Martin formula , 1990 .

[18]  F. Hirsch,et al.  Formes de Dirichlet gnrales et densit des variables alatoires relles sur l'espace de Wiener , 1986 .

[19]  A. Martin-Löf Limit theorems for the motion of a Poisson system of independent Markovian particles with high density , 1976 .

[20]  Kiyosi Itô,et al.  SPECTRAL TYPE OF THE SHIFT TRANSFORMATION OF DIFFERENTIAL PROCESSES WITH STATIONARY INCREMENTS( , 1956 .

[21]  T. O’Neil Geometric Measure Theory , 2002 .

[22]  M. Röckner,et al.  Differential geometry of Poisson spaces , 1996 .

[23]  N. Bouleau Construction of Dirichlet structures , 1996 .

[24]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[25]  A. Coquio Forme de Dirichlet sur l'espace canonique de Poisson et applications aux équations différentielles stochastiques , 1993 .

[26]  Peter Kuster,et al.  Malliavin calculus for processes with jumps , 1991 .

[27]  D. Nualart,et al.  Anticipative calculus for the Poisson process based on the Fock space , 1990 .

[28]  P. Meyer Elements de probabilites quantiques , 1989 .

[29]  Liming Wu Construction de l'operateur de malliavin sur l'espace de poisson , 1987 .

[30]  Nicolas Bouleau Decomposition de l'energie par niveau de potentiel , 1984 .