Semi-analytical modelling with numerical and experimental validation of electromagnetic forming using a uniform pressure actuator

Abstract In this study, an electromagnetic forming process using a uniform pressure actuator is investigated through electro-magnetic-mechanically coupled numerical simulations; a simplified analytical model to predict the forming pressure and shell theory for mechanical deformation; and experimental results, which include Photon Doppler Velocimetry to measure the deformation. Velocity and the final deformed part shape are compared between the numerical, analytical, and experimental methods and reasonably good agreement is demonstrated. However, accurate comparison is affected by the energy level used with the numerical simulations matching better for the lower energy case due to less material draw-in and the analytical model providing more precise results for the higher energy case.