Reversible Thermochromism in All‐Inorganic Lead‐Free Cs3Sb2I9 Perovskite Single Crystals

Here, lattice expansion modulated reversible thermochromism (TCM) in all‐inorganic lead‐free Cs3Sb2I9 perovskite single crystals (SCs) is demonstrated. Upon temperature change, Cs3Sb2I9 SC exhibits a reversible color change between red and dark‐brown. The corresponding optical band‐edge modulation and structural phase transition are monitored by temperature dependent UV–vis absorption spectroscopy and X‐ray diffraction study. This observed reversible TCM is attributed to the lattice expansion and strain relaxation at elevated temperatures. Additionally, Raman spectroscopy confirms enhanced electron–phonon coupling originating from stretched SbI terminal bonds at elevated temperature. This work validates that the all‐inorganic Cs3Sb2I9 perovskites have the potential in smart thermochromic windows and temperature sensors applications.

[1]  Chien-Yu Chen,et al.  Panchromatic heterojunction solar cells for Pb-free All-Inorganic antimony based perovskite , 2021 .

[2]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[3]  Y. Hayashi,et al.  Single crystal of two-dimensional mixed-halide copper-based perovskites with reversible thermochromism , 2021, Journal of Materials Chemistry C.

[4]  C. Sheng,et al.  Robust and Swiftly Reversible Thermochromic Behavior of a 2D Perovskite of (C6H4(CH2NH3)2)(CH3NH3)[Pb2I7] for Smart Window and Photovoltaic Smart Window Applications. , 2021, ACS applied materials & interfaces.

[5]  Soumitra Satapathi,et al.  Structural Disorder and Spin Dynamics Study in Millimeter-Sized All-Inorganic Lead-Free Cesium Bismuth Halide Perovskite Single Crystals , 2020 .

[6]  M. Abdi‐Jalebi,et al.  Recent progress in morphology optimization in perovskite solar cell , 2020, Journal of Materials Chemistry A.

[7]  Bryon W. Larson,et al.  Structure, Morphology, and Photovoltaic Implications of Halide Alloying in Lead‐Free Cs 3 Sb 2 Cl x I 9– x 2D‐Layered Perovskites , 2020 .

[8]  R. Srivastava,et al.  A comprehensive review on synthesis and applications of single crystal perovskite halides , 2020, Progress in Solid State Chemistry.

[9]  C. Pao,et al.  Modulating Performance and Stability of Inorganic Lead-Free Perovskite Solar Cells via Lewis-pair mediation. , 2020, ACS applied materials & interfaces.

[10]  F. Gao,et al.  Lead‐Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap , 2020, Angewandte Chemie.

[11]  D. Ginger,et al.  Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells , 2020 .

[12]  Spectroscopy of Lanthanide Doped Oxide Materials , 2020 .

[13]  Di Wu,et al.  Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs3Sb2Br9 Quantum Dots , 2020 .

[14]  Tzung‐Fang Guo,et al.  Lead-free Antimony-based Light-Emitting Diodes through Vapor-Anion Exchange Method. , 2019, ACS applied materials & interfaces.

[15]  Bo Zou,et al.  High-Pressure Band-Gap Engineering and Metallization in Perovskite Derivative Cs3Sb2I9. , 2019, ChemSusChem.

[16]  Jing Zhang,et al.  Pb‐Site Doping of Lead Halide Perovskites for Efficient Solar Cells , 2019, Solar RRL.

[17]  Jyoti Gupta,et al.  Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review , 2019, Global challenges.

[18]  Alison B. Walker,et al.  Putting the Squeeze on Lead Iodide Perovskites: Pressure-Induced Effects To Tune Their Structural and Optoelectronic Behavior , 2019, Chemistry of materials : a publication of the American Chemical Society.

[19]  Xiaojing Ren,et al.  Thermochromic Lead‐Free Halide Double Perovskites , 2019, Acta Crystallographica Section A Foundations and Advances.

[20]  M. Shtein,et al.  Local Optoelectronic Characterization of Solvent-Annealed, Lead-Free, Bismuth-Based Perovskite Films. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[21]  S. Acharya,et al.  Size Tunable Cesium Antimony Chloride Perovskite Nanowires and Nanorods , 2018 .

[22]  David T. Limmer,et al.  Thermochromic halide perovskite solar cells , 2018, Nature Materials.

[23]  Anupriya Singh,et al.  Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9. , 2018, ACS applied materials & interfaces.

[24]  Jing Zhang,et al.  Thermochromism to tune the optical bandgap of a lead-free perovskite-type hybrid semiconductor for efficiently enhancing photocurrent generation , 2017 .

[25]  Liming Ding,et al.  Lead-free Perovskite Materials (NH4 )3 Sb2 Ix Br9-x. , 2017, Angewandte Chemie.

[26]  M. Kanatzidis,et al.  Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) , 2017 .

[27]  U. Buttner,et al.  Thermochromic Perovskite Inks for Reversible Smart Window Applications , 2017 .

[28]  Bo Zou,et al.  Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. , 2016, The journal of physical chemistry letters.

[29]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[30]  Saad Mekhilef,et al.  Performance, materials and coating technologies of thermochromic thin films on smart windows , 2013 .

[31]  Mark D. Smith,et al.  Structural diversity and thermochromic properties of iodobismuthate materials containing d-metal coordination cations: observation of a high symmetry [Bi3I11]2- anion and of isolated I- anions. , 2011, Journal of the American Chemical Society.

[32]  M. Baron,et al.  Temperature sensing using reversible thermochromic polymeric films , 2003 .

[33]  Koji Yamada,et al.  Reconstructive Phase Transformation and Kinetics of Cs3Sb2I9by Means of Rietveld Analysis of X-Ray Diffraction and127I NQR , 1997 .

[34]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .