Phylogenetic tree shapes resolve disease transmission patterns

The shapes of phylogenies of pathogens can reveal patterns in how an outbreak spreads. We used simple features to summarise the shapes of pathogen phylogenies. This provided enough information to distinguish outbreaks with super-spreaders, outbreaks spreading homogeneously, and those with chains of transmission.

[1]  Xavier Didelot,et al.  Bayesian Inference of Infectious Disease Transmission from Whole-Genome Sequence Data , 2014, Molecular biology and evolution.

[2]  Stephen D. Bentley,et al.  Rapid Whole-Genome Sequencing for Investigation of a Suspected Tuberculosis Outbreak , 2012, Journal of Clinical Microbiology.

[3]  Mark Kirkpatrick,et al.  DO PHYLOGENETIC METHODS PRODUCE TREES WITH BIASED SHAPES? , 1996, Evolution; international journal of organic evolution.

[4]  Katy Robinson,et al.  How the Dynamics and Structure of Sexual Contact Networks Shape Pathogen Phylogenies , 2013, PLoS Comput. Biol..

[5]  Jukka Corander,et al.  Evolution and transmission of drug resistant tuberculosis in a Russian population , 2014, Nature Genetics.

[6]  Steven J. M. Jones,et al.  Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. , 2011, The New England journal of medicine.

[7]  Thibaut Jombart,et al.  outbreaker2: Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data , 2018 .

[8]  J. Gardy,et al.  Phylogenetic tree shapes resolve disease transmission patterns , 2014, bioRxiv.

[9]  T Jombart,et al.  Reconstructing disease outbreaks from genetic data: a graph approach , 2010, Heredity.

[10]  D. H. Colless,et al.  Phylogenetics: The Theory and Practice of Phylogenetic Systematics. , 1982 .

[11]  J Wallinga,et al.  Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data , 2012, Proceedings of the Royal Society B: Biological Sciences.

[12]  Art F. Y. Poon,et al.  Mapping the Shapes of Phylogenetic Trees from Human and Zoonotic RNA Viruses , 2013, PloS one.

[13]  Eric S. Lander,et al.  Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011 , 2012, Proceedings of the National Academy of Sciences.

[14]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[15]  Erik M. Volz,et al.  Complex Population Dynamics and the Coalescent Under Neutrality , 2012, Genetics.

[16]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[17]  Erik M. Volz,et al.  Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection , 2012, PLoS Comput. Biol..

[18]  Beda Joos,et al.  Estimating the basic reproductive number from viral sequence data. , 2012, Molecular biology and evolution.

[19]  A. Rambaut,et al.  Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics , 2008, PLoS medicine.

[20]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[21]  Julian Parkhill,et al.  Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. , 2012, The New England journal of medicine.

[22]  M. Lipsitch,et al.  Population genomics of post-vaccine changes in pneumococcal epidemiology , 2013, Nature Genetics.

[23]  Marco Salemi,et al.  PhyloTempo: A Set of R Scripts for Assessing and Visualizing Temporal Clustering in Genealogies Inferred from Serially Sampled Viral Sequences , 2012, Evolutionary bioinformatics online.

[24]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[25]  T. Stadler Inferring Epidemiological Parameters on the Basis of Allele Frequencies , 2011, Genetics.

[26]  Erik M. Volz,et al.  Modelling tree shape and structure in viral phylodynamics , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Daniel J. Wilson,et al.  Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study , 2013, The Lancet. Infectious diseases.

[28]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[29]  Tanja Stadler,et al.  Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  S. Heard,et al.  PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC, AND RANDOMLY GENERATED PHYLOGENETIC TREES , 1992, Evolution; international journal of organic evolution.

[31]  Huldrych F. Günthard,et al.  Inferring Epidemic Contact Structure from Phylogenetic Trees , 2012, PLoS Comput. Biol..

[32]  M. J. Sackin,et al.  “Good” and “Bad” Phenograms , 1972 .

[33]  Jacco Wallinga,et al.  Relating Phylogenetic Trees to Transmission Trees of Infectious Disease Outbreaks , 2013, Genetics.

[34]  Noah A. Rosenberg,et al.  The Mean and Variance of the Numbers of r-Pronged Nodes and r-Caterpillars in Yule-Generated Genealogical Trees , 2006 .

[35]  Nader Pourmand,et al.  Use of Whole Genome Sequencing to Determine the Microevolution of Mycobacterium tuberculosis during an Outbreak , 2013, PloS one.

[36]  Andrew Rambaut,et al.  Evolutionary analysis of the dynamics of viral infectious disease , 2009, Nature Reviews Genetics.

[37]  Wendy Macdowall,et al.  Sexual behaviour in Britain: partnerships, practices, and HIV risk behaviours , 2001, The Lancet.

[38]  O. Pybus,et al.  The Epidemic Behavior of the Hepatitis C Virus , 2001, Science.