Cosmic and terrestrial single-event radiation effects in dynamic random access memories

A review of the literature on single-event radiation effects (SEE) on MOS integrated-circuit dynamic random access memories (DRAMs) is presented. The sources of single-event (SE) radiation particles, causes of circuit information loss, experimental observations of SE information upset, technological developments for error mitigation, and relationships of developmental trends to SE vulnerability are discussed.

[1]  A. B. Campbell,et al.  Charge Transport by the Ion Shunt Effect , 1986, IEEE Transactions on Nuclear Science.

[2]  P. Mcnulty,et al.  Effectiveness of CMOS Charge Reflection Barriers in Space Radiation Environments , 1987, IEEE Transactions on Nuclear Science.

[3]  Kiyoo Itoh,et al.  A corrugated capacitor cell (CCC) for megabit dynamic MOS memories , 1982 .

[4]  R. Koga,et al.  Single Event Error Immune CMOS RAM , 1982, IEEE Transactions on Nuclear Science.

[5]  R.H. Dennard,et al.  Evolution of the MOSFET dynamic RAM—A personal view , 1984, IEEE Transactions on Electron Devices.

[6]  Ashwin H. Shah,et al.  TITE RAM: A NEW SOI DRAM GAIN CELL FOR MBIT DRAM's. , 1984 .

[7]  K. Arimoto,et al.  A built-in Hamming code ECC circuit for DRAMs , 1989 .

[8]  P. Chatterjee,et al.  A trench transistor cross-point DRAM cell , 1985, 1985 International Electron Devices Meeting.

[9]  J. Ziegler,et al.  Effect of Cosmic Rays on Computer Memories , 1979, Science.

[10]  H. Kalter,et al.  An Experimental 120 NS One-Half Megabit Dynamic RAM with Plate Push Cell , 1983, 1983 Symposium on VLSI Technology. Digest of Technical Papers.

[11]  H. R. Schwartz,et al.  Single-Event Upset (SEU) in a Dram with On-Chip Error Correction , 1987, IEEE Transactions on Nuclear Science.

[12]  B. D. Shafer,et al.  The design of radiation-hardened ICs for space: a compendium of approaches , 1988, Proc. IEEE.

[13]  A. B. Campbell,et al.  SEU flight data from the CRRES MEP , 1991 .

[14]  D. Binder,et al.  Satellite Anomalies from Galactic Cosmic Rays , 1975, IEEE Transactions on Nuclear Science.

[15]  K. P. Ray,et al.  Test of SEU algorithms against preliminary CRRES satellite data , 1991 .

[16]  N.C.C. Lu,et al.  A new failure mode of radiation-induced soft errors in dynamic memories , 1988, IEEE Electron Device Letters.

[17]  D.S. Yaney,et al.  The use of thin epitaxial silicon layers for MOS VLSI , 1981, 1981 International Electron Devices Meeting.

[18]  R. D. Rasmussen Spacecraft electronics design for radiation tolerance , 1988 .

[19]  Shojiro Asai,et al.  A soft error rate model for MOS dynamic RAM's , 1982 .

[20]  T. May,et al.  Alpha-particle-induced soft errors in dynamic memories , 1979, IEEE Transactions on Electron Devices.

[21]  K. Fujishima,et al.  Cell-Plate Line Connecting Complementary Bitline (c/sup 3/) Architecture For Battery Operating DRAMs , 1991, 1991 Symposium on VLSI Circuits.

[22]  K. Yamaguchi,et al.  Two-Dimensional Numerical Model of Memory Devices with a Corrugated Capacitor Cell Structure , 1985, IEEE Journal of Solid-State Circuits.

[23]  T. May,et al.  A New Physical Mechanism for Soft Errors in Dynamic Memories , 1978, 16th International Reliability Physics Symposium.

[24]  G.A. Sai-Halasz Cosmic ray induced soft error rate in VLSI circuits , 1983, IEEE Electron Device Letters.

[25]  J. Yamada Selector-line merged built-in ECC technique for DRAMs , 1987 .

[26]  K. Sonoda,et al.  Charge Collection Control Using Retrograde Well Tested by Proton Microprobe Irradiation , 1993 .

[27]  K. Itoh Trends in megabit DRAM circuit design , 1990 .

[28]  Eiji Takeda,et al.  Alpha-Particle-Induced Source-Drain Penetration (ALPEN) Effects -A New Soft Error Phenomenon- , 1987 .

[29]  Hideto Hidaka,et al.  Cell-plate line connecting complementary bit-line (C/sup 3/) architecture for battery-operated DRAMs , 1992 .

[30]  Lloyd W. Massengill,et al.  Single event mirroring and DRAM sense amplifier designs for improved single-event-upset performance , 1994 .

[31]  Toshio Yamada,et al.  A 4-Mbit DRAM with 16-bit concurrent ECC , 1988 .

[32]  R. H. Dennard,et al.  Alpha-particle-induced soft error rate in VLSI circuits , 1982 .

[33]  W. T. Corbett,et al.  Radiation-Hard Design Principles Utilized in CMOS 8085 Microprocessor Family , 1983, IEEE Transactions on Nuclear Science.

[34]  R. Baumann,et al.  Boron compounds as a dominant source of alpha particles in semiconductor devices , 1995, Proceedings of 1995 IEEE International Reliability Physics Symposium.

[35]  S. Kirkpatrick Modeling diffusion and collection of charge from ionizing radiation in silicon devices , 1979, IEEE Transactions on Electron Devices.

[36]  H. Masuda,et al.  An n-well CMOS dynamic RAM , 1982, IEEE Transactions on Electron Devices.

[37]  Kiyoo Itoh,et al.  ALPHA-PARTICLE-INDUCED CHARGE COLLECTION IN SCALED DRAM CELLS WITH ADVANCED STRUCTURES , 1990 .

[38]  Yoshio Matsuda,et al.  MECHANISM OF BIT LINE MODE SOFT ERROR FOR DRAM. , 1987 .

[39]  Pinaki Mazumder An on-chip ECC circuit for correcting soft errors in DRAMs with trench capacitors , 1992 .

[40]  J. C. Pickel,et al.  Cosmic Ray Induced in MOS Memory Cells , 1978, IEEE Transactions on Nuclear Science.

[41]  T. J. O'Gorman The effect of cosmic rays on the soft error rate of a DRAM at ground level , 1994 .

[42]  James H. Adams,et al.  The Natural Radiation Environment inside Spacecraft , 1982, IEEE Transactions on Nuclear Science.

[43]  Soft error susceptibility mapping of DRAMs using a high-energy nuclear microprobe , 1993 .

[44]  Kiyoo Itoh,et al.  Alpha-particle-induced charge collection measurements for megabit DRAM cells , 1989 .

[45]  W. Reczek,et al.  Design Concept for Radiation Hardening of Low Power and Low Voltage Dynamic Memories , 1994, ESSCIRC '94: Twientieth European Solid-State Circuits Conference.

[46]  Y. Hokari,et al.  Buried storage electrode (BSE) cell for megabit DRAMs , 1985, 1985 International Electron Devices Meeting.

[47]  A.M. Mohsen,et al.  Alpha-particle-induced charge collection measurements and the effectiveness of a novel p-well protection barrier on VLSI memories , 1985, IEEE Transactions on Electron Devices.

[48]  E. G. Stassinopoulos,et al.  Space radiation evaluation of 16 Mbit DRAMs for mass memory applications , 1994 .

[49]  John A. Zoutendyk,et al.  Single Event Upset Immune Integrated Circuits for Project Galileo , 1985, IEEE Transactions on Nuclear Science.

[50]  Robert Ecoffet,et al.  Heavy ion induced single hard errors on submicronic memories (for space application) , 1992 .

[51]  Eugene Normand,et al.  Investigation and Characterization of SEU Effects and Hardening Strategies in Avionics. , 1995 .

[52]  H. R. Schwartz,et al.  TRENDS IN DEVICE SEE SUSCEPTIBILITY FROM HEAVY IONS , 1995, Proceedings of 1995 IEEE Nuclear and Space Radiation Effects Conference (NSREC'95).

[53]  G.A. Sai-Halasz,et al.  A buried N-grid for protection against radiation induced charge collection in electronic circuits , 1981, 1981 International Electron Devices Meeting.

[54]  J.A. Seitchik,et al.  Alpha-particle-induced charge transfer between closely spaced memory cells , 1986, IEEE Transactions on Electron Devices.

[55]  T. R. Oldham,et al.  Charge Funneling in N- and P-Type Si Substrates , 1982, IEEE Transactions on Nuclear Science.

[56]  R. Barry,et al.  Single event effect proton and heavy ion test results in support of candidate NASA programs , 1995, Proceedings of 1995 IEEE Nuclear and Space Radiation Effects Conference (NSREC'95).

[57]  Lloyd W. Massengill,et al.  Effects of process parameter distributions and ion strike locations on SEU cross-section data (CMOS SRAMs) , 1993 .

[58]  A. Taber,et al.  Single event upset in avionics , 1993 .

[59]  R. Harboe-Sorensen,et al.  Radiation testing of flight lots for MARS-94 covering-semiconductor types as 4 M-BIT DRAM, 256 K-BIT SRAM, 256 K-BIT EEPROM and a 53C90 SCSI controller , 1993, RADECS 93. Second European Conference on Radiation and its Effects on Components and Systems (Cat. No.93TH0616-3).

[60]  Allan H. Johnston,et al.  A new class of single event hard errors [DRAM cells] , 1994 .

[61]  D. Critchlow,et al.  A substrate-plate trench-capacitor (SPT) memory cell for dynamic RAM's , 1986 .

[62]  R. J. McPartland Circuit simulations of alpha-particle-induced soft errors in MOS dynamic RAMs , 1981 .

[63]  K. Fujishima,et al.  A storage-node-boosted RAM with word-line delay compensation , 1982, IEEE Journal of Solid-State Circuits.

[64]  A.F. Tasch,et al.  The Hi-C RAM cell concept , 1977, IEEE Transactions on Electron Devices.

[65]  J.D. Meindl,et al.  Physical limits of VLSI dRAM's , 1985, IEEE Transactions on Electron Devices.

[66]  T. May Soft Errors in VLSI: Present and Future , 1979 .

[67]  Pinaki Mazumder,et al.  Design of a Fault-Tolerant Three-Dimensional Dynamic Random-Access Memory with On-Chip Error-Correcting Circuit , 1993, IEEE Trans. Computers.

[68]  R. Harboe-Sorensen,et al.  Heavy ion, proton and Co-60 radiation evaluation of 16 Mbit DRAM memories for space application , 1995, Proceedings of 1995 IEEE Nuclear and Space Radiation Effects Conference (NSREC'95).

[69]  D. Bouldin The measurement of alpha particle emissions from semiconductor memory materials , 1981 .

[70]  D. Yaney,et al.  Alpha particle tracks in silicon and their effect on dynamic MOS RAM reliability , 1978, 1978 International Electron Devices Meeting.

[71]  Lloyd W. Massengill,et al.  A proposed SEU tolerant dynamic random access memory (DRAM) cell , 1994 .

[72]  K. Jenkins,et al.  Ion microbeam probing of sense amplifiers to analyze single event upsets in a CMOS DRAM , 1991 .

[73]  Kiyoo Itoh,et al.  A diagonal active-area stacked capacitor DRAM cell with storage capacitor on bit line , 1990 .

[74]  S. Duzellier,et al.  Heavy Ton / Proton Test Results On High Integrated Memories , 1993, 1993 IEEE Radiation Effects Data Workshop.

[75]  Sohei Manabe,et al.  Impact of the minority carrier outflow (MCO) effect on the /spl alpha/-particle-induced soft error of scaled DRAMs , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[76]  Y. Kamigaki,et al.  An n-Well CMOS Dynamic RAM , 1982, IEEE Journal of Solid-State Circuits.

[77]  J. Zoutendyk,et al.  Characterization of multiple-bit errors from single-ion tracks in integrated circuits , 1989 .

[78]  R. Chitty,et al.  On the suitability of non-hardened high density SRAMs for space applications , 1991 .

[79]  John P. Retzler Fault Tolerant Memories for Single Particle Radiation Effects , 1981, IEEE Transactions on Nuclear Science.

[80]  P. Garnier,et al.  Total dose failures in advanced electronics from single ions , 1993 .

[81]  E. A. Burke,et al.  Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices , 1982, IEEE Transactions on Nuclear Science.

[82]  A. F. Tasch,et al.  Memory cell and technology issues for 64- and 256-Mbit one-transistor cell MOSD DRAMs , 1989, Proc. IEEE.

[83]  John A. Zoutendyk,et al.  Response of a DRAM to single-ion tracks of different heavy-ion species and stopping powers , 1990 .

[84]  Kiyoo Itoh,et al.  A 1.5 V DRAM for battery-based applications , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[85]  H. R. Schwartz,et al.  Overview Of Device See Susceptibility From Heavy Ions , 1993, 1993 IEEE Radiation Effects Data Workshop.