Dynamics of minimal supersymmetric standard model flat directions consisting of multiple scalar fields

Although often chosen because of simplicity, a single scalar field does not provide a general parametrization of a minimal supersymmetric standard model (MSSM) flat direction. We derive a formalism for a class of gauge invariant polynomials which result in a multifield description of flat directions. In contrast to the single field case, the vanishing of the gauge currents yields an important dynamical constraint in the multifield framework. We consider in detail the example of the HuL flat direction and study the dynamical evolution during and after inflation. We highlight the differences between the single and the multifield flat directions. We show that in the multifield case the field space has an intrinsic curvature and hence unsuppressed non-minimal kinetic terms for the flat direction scalars arise. Also the phases of the individual components evolve non-trivially right after inflation, charging the components of the condensate and producing an enhanced entropy after the decay of the condensate, which is due to cross-coupling of different lepton flavours in the F term. However, the qualitative features of the single field Affleck–Dine baryogenesis, such as the produced total charge, remain largely unchanged.

[1]  A. Mazumdar,et al.  Minimal supersymmetric Higgs bosons with extra dimensions as the source of reheating and all matter. , 2004, Physical review letters.

[2]  A. Mazumdar,et al.  Minimal supersymmetric standard model flat direction as a curvaton , 2003 .

[3]  K. Hamaguchi,et al.  Curvatons in supersymmetric models , 2003, hep-ph/0308174.

[4]  A. Mazumdar,et al.  Evolution of primordial perturbations and a fluctuating decay rate , 2003, astro-ph/0306509.

[5]  F. Takahashi,et al.  MSSM curvaton in the gauge-mediated SUSY breaking , 2003, hep-ph/0305134.

[6]  A. Mazumdar,et al.  Resonant decay of flat directions , 2003, hep-ph/0304246.

[7]  A. Mazumdar,et al.  Challenges in generating density perturbations from a fluctuating inflaton coupling , 2003, astro-ph/0304187.

[8]  A. Mazumdar,et al.  Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model. , 2003, Physical review letters.

[9]  M. Postma The Curvaton scenario in supersymmetric theories , 2002, hep-ph/0212005.

[10]  Masato Senami,et al.  Leptogenesis via multiscalar coherent evolution in a supersymmetric neutrino seesaw model , 2002, hep-ph/0210073.

[11]  A. Mazumdar,et al.  Cosmological consequences of MSSM flat directions , 2002, hep-ph/0209244.

[12]  A. Mazumdar,et al.  Inflatonic solitons in running mass inflation , 2002, hep-ph/0206272.

[13]  Masato Senami,et al.  Flat manifold leptogenesis in the supersymmetric standard model , 2002, hep-ph/0205041.

[14]  A. Mazumdar,et al.  Reheating as a surface effect. , 2002, Physical review letters.

[15]  A. Jokinen Analytical and numerical properties of Affleck-Dine condensate formation , 2002, hep-ph/0204086.

[16]  T. Multamaki,et al.  Simulations of Q-ball formation , 2002, hep-ph/0203195.

[17]  M. Kawasaki,et al.  Q-ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge-mediated SUSY breaking ? , 2001, hep-ph/0106119.

[18]  F. Takahashi,et al.  Adiabatic and isocurvature fluctuations of Affleck–Dine field in D-term inflation model , 2001, hep-ph/0105134.

[19]  Masato Senami,et al.  Affleck–Dine leptogenesis with triplet Higgs , 2001, hep-ph/0105054.

[20]  C. Savoy,et al.  Supersymmetric Flat Directions and Analytic Gauge Invariants , 2001, hep-th/0104077.

[21]  A. Jokinen,et al.  Numerical simulations of fragmentation of the Affleck-Dine condensate , 2000, hep-ph/0011134.

[22]  J. McDonald,et al.  Flat direction condensate instabilities in the MSSM , 2000, hep-ph/0004050.

[23]  M. Kawasaki,et al.  Q Ball formation in the gravity mediated SUSY breaking scenario , 2000, hep-ph/0002285.

[24]  J. McDonald,et al.  Inflationary Affleck-Dine scalar dynamics and isocurvature perturbations , 1999, hep-ph/9912478.

[25]  M. Kawasaki,et al.  Q-ball formation through the Affleck-Dine mechanism , 1999, hep-ph/9909509.

[26]  M. Kawasaki,et al.  Remarks on cosmic string formation during preheating on lattice simulations , 1999, hep-ph/9903324.

[27]  J. McDonald,et al.  Observable isocurvature fluctuations from the Affleck-Dine condensate , 1998, hep-ph/9811412.

[28]  J. McDonald,et al.  B-BALL BARYOGENESIS AND THE BARYON TO DARK MATTER RATIO , 1998, hep-ph/9803380.

[29]  C. Kolda,et al.  Supersymmetric D -term inflation, reheating, and Affleck-Dine baryogenesis , 1998, hep-ph/9802358.

[30]  J. McDonald,et al.  Q-balls and baryogenesis in the MSSM , 1997, hep-ph/9711514.

[31]  M. Shaposhnikov,et al.  Supersymmetric Q-balls as dark matter , 1997, hep-ph/9709492.

[32]  A. Kusenko Solitons in the supersymmetric extensions of the standard model , 1997, hep-ph/9704273.

[33]  S. P. Martin,et al.  Flat directions in the scalar potential of the supersymmetric standard model , 1995, hep-ph/9510370.

[34]  Scott D. Thomas,et al.  Baryogenesis from flat directions of the supersymmetric standard model , 1995, hep-ph/9507453.

[35]  Thomas,et al.  Supersymmetry breaking in the early universe. , 1995, Physical review letters.

[36]  N. Seiberg Naturalness Versus Supersymmetric Non-renormalization Theorems , 1993, hep-ph/9309335.

[37]  R. Gatto,et al.  Consequences of the complex character of the internal symmetry in supersymmetric theories , 1987 .

[38]  S. Theisen Fourth-order supergravity S. Theisen, Nucl. Phys. B263 (1986) 687 Appendum , 1986 .

[39]  Gerald W. Schwarz,et al.  The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories , 1985 .

[40]  R. Gatto,et al.  Zeros of the D-term and complexification of the gauge group in supersymmetric theories , 1985 .

[41]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[42]  G. Sartori A theorem on orbit structures (strata) of compact linear Lie groups , 1983 .

[43]  R. Gatto,et al.  Gauge symmetry breaking in supersymmetric gauge theories: Necessary and sufficient condition☆ , 1982 .

[44]  S. Ferrara,et al.  Patterns of symmetry breaking in supersymmetric gauge theories , 1982 .

[45]  M. Grisaru,et al.  Improved Methods for Supergraphs , 1979 .

[46]  G. Sartori Universality in Orbit Spaces of Symmetry Groups and in Spontaneous Symmetry Breaking , 1989 .

[47]  J. Balog Non-topological anomalies and Wess-Zumino effective action , 1985 .