Inverse Time Dependency in Convex Regularized Learning
暂无分享,去创建一个
Haixun Wang | Zheng Chen | Zeyuan Allen Zhu | Weizhu Chen | Chenguang Zhu | Gang Wang | Haixun Wang | Z. Zhu | Weizhu Chen | Zheng Chen | Gang Wang | Chenguang Zhu
[1] Léon Bottou,et al. The Tradeoffs of Large Scale Learning , 2007, NIPS.
[2] Zheng Chen,et al. P-packSVM: Parallel Primal grAdient desCent Kernel SVM , 2009, 2009 Ninth IEEE International Conference on Data Mining.
[3] Martin Zinkevich,et al. Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.
[4] T. Minka. A comparison of numerical optimizers for logistic regression , 2004 .
[5] Shai Shalev-Shwartz,et al. Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .
[6] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..
[7] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[8] Nathan Srebro,et al. Fast Rates for Regularized Objectives , 2008, NIPS.
[9] Yiming Yang,et al. RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..
[10] Nathan Srebro,et al. SVM optimization: inverse dependence on training set size , 2008, ICML '08.
[11] Tong Zhang,et al. Solving large scale linear prediction problems using stochastic gradient descent algorithms , 2004, ICML.
[12] Y. Singer,et al. Logarithmic Regret Algorithms for Strongly Convex Repeated Games , 2007 .
[13] Sham M. Kakade,et al. Mind the Duality Gap: Logarithmic regret algorithms for online optimization , 2008, NIPS.
[14] Elad Hazan,et al. Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.