On triangles in K_r-minor free graphs

We study graphs where each edge adjacent to a vertex of small degree (7 and 9, respectively) belongs to many triangles (4 and 5, respectively) and show that these graphs contain a complete graph (K_6 and K_7, respectively) as a minor. The second case settles a problem of Nevo (Nevo, 2007). Morevover if each edge of a graph belongs to 6 triangles then the graph contains a K_8-minor or contains K_{2,2,2,2,2} as an induced subgraph. We then show applications of these structural properties to stress freeness and coloration of graphs. In particular, motivated by Hadwiger's conjecture, we prove that every K_7-minor free graph is 8-colorable and every K_8-minor free graph is 10-colorable.

[1]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[2]  David R. Wood,et al.  Thomassen's Choosability Argument Revisited , 2010, SIAM J. Discret. Math..

[3]  Alexander Schrijver,et al.  A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs , 1998 .

[4]  Leif K. Jørgensen,et al.  Contractions to k8 , 1994, J. Graph Theory.

[5]  Robin Thomas,et al.  The extremal function for K9 minors , 2006, J. Comb. Theory, Ser. B.

[6]  Jianer Chen,et al.  On Assembly of Four-Connected Graphs (Extended Abstract) , 1992, WG.

[7]  Ken-ichi Kawarabayashi,et al.  Double-Critical Graphs and Complete Minors , 2008, Electron. J. Comb..

[8]  B. Mohar,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory B.

[9]  Santosh S. Vempala,et al.  The Colin de Verdière number and sphere representations of a graph , 1997, Comb..

[10]  W. Whiteley Infinitesimally rigid polyhedra. I. Statics of frameworks , 1984 .

[11]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[12]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[13]  J. Rodriguez,et al.  Problem (2) , 1994 .

[14]  Anders Sune Pedersen,et al.  Complete and Almost Complete Minors in Double-Critical 8-Chromatic Graphs , 2010, Electron. J. Comb..

[15]  Eran Nevo,et al.  On embeddability and stresses of graphs , 2004, Comb..

[16]  Walter Whiteley,et al.  Plane Self Stresses and projected Polyhedra I: The Basic Pattem , 1993 .

[17]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[18]  James G. Oxley,et al.  Matroid theory , 1992 .

[19]  W. Mader Homomorphiesätze für Graphen , 1968 .

[20]  Paul D. Seymour,et al.  Graph minors. IX. Disjoint crossed paths , 1990, J. Comb. Theory, Ser. B.

[21]  Walter Whiteley,et al.  Vertex Splitting in Isostatic Frameworks , 1990 .