Nonlinear-elastic membrane-shell model for single-walled carbon nanotubes under uni-axial deformation ☆

Molecular dynamics (MD) simulations show that single walled carbon nanotube (SWCNT) under uniaxial deformation, behaves as nonlinear elastic thin cylinder, prior to buckling or fracture. While the stress-stretch response is independent of diameter and length of the SWCNT, we found that it is dependent on the chirality of SWCNT. A continuum membrane-shell model is proposed for SWCNT. The parameters of this equation are calibrated from results of molecular dynamics. It is found that the membrane-shell model recovers the stress-stretch behavior of SWCNT as obtained from MD simulation. We could hence adopt the continuum membrane shell model to simulate the non-linear response of SWCNT, at a fraction of the simulation time of MD.

[1]  R. Taylor,et al.  Theory and finite element formulation of rubberlike membrane shells using principal stretches , 1992 .

[2]  R. Batra,et al.  Continuum models of multi-walled carbon nanotubes , 2007 .

[3]  Paul K. Hansma,et al.  Carbon nanotubes as probes for atomic force microscopy , 2000 .

[4]  Z. Y. Tay,et al.  Examination of cylindrical shell theories for buckling of carbon nanotubes , 2011 .

[5]  J. Humphrey,et al.  Finite element analysis of nonlinear orthotropic hyperelastic membranes , 1996 .

[6]  R. Batra,et al.  Macroscopic properties of carbon nanotubes from molecular-mechanics simulations , 2004 .

[7]  P. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  Jens Wackerfuß,et al.  Molecular mechanics in the context of the finite element method , 2009 .

[10]  A. Omeltchenko,et al.  Atomistic modeling of the fracture of polycrystalline diamond , 2000 .

[11]  A. Pantano,et al.  Mechanics of Axial Compression of Single and Multi-Wall Carbon Nanotubes , 2004 .

[12]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[13]  Yingyan Zhang,et al.  Mechanical properties of graphynes under tension: A molecular dynamics study , 2012 .

[14]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[15]  N. Ohno,et al.  First-principles study of mechanical properties of one-dimensional carbon nanotube intramolecular junctions , 2013 .

[16]  P. Geubelle,et al.  An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation , 2004 .

[17]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[18]  Deformation produced by a simple tensile load in an isotropic elastic body , 1976 .

[19]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[20]  C. Wang,et al.  Continuum Shell Model for Buckling of Single-Walled Carbon Nanotubes with Different Chiral Angles , 2014 .

[21]  Y. Shibutani,et al.  Ideal tensile strength and band gap of single-walled carbon nanotubes , 2003 .

[22]  N. Aluru,et al.  Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. , 2009, Nano letters.

[23]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[24]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[25]  Heyes Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. , 1994, Physical review. B, Condensed matter.

[26]  Sidney R. Cohen,et al.  Torsional electromechanical quantum oscillations in carbon nanotubes , 2006, Nature nanotechnology.

[27]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[28]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[29]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[30]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[31]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[32]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[33]  C. Wang,et al.  CONTINUUM SHELL MODEL FOR BUCKLING OF ARMCHAIR CARBON NANOTUBES UNDER COMPRESSION OR TORSION , 2014 .

[34]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[35]  P. McEuen,et al.  Bending and twisting of suspended single-walled carbon nanotubes in solution. , 2009, Nano letters.

[36]  P. Ming,et al.  Ab initio calculation of ideal strength and phonon instability of graphene under tension , 2007 .

[37]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[38]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000 .

[39]  Bernard Budiansky,et al.  Notes on nonlinear shell theory. , 1968 .

[40]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[41]  K. Liao,et al.  Nonlinear elastic properties of carbon nanotubes subjected to large axial deformations , 2002 .

[42]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[43]  T. Belytschko,et al.  The role of vacancy defects and holes in the fracture of carbon nanotubes , 2004 .

[44]  K. T. Ramesh,et al.  An approach to multi-body interactions in a continuum-atomistic context: Application to analysis of tension instability in carbon nanotubes , 2006 .

[45]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[46]  Paul Geerlings,et al.  Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene , 2000 .