Ecological optimization of a generalized irreversible Carnot refrigerator in the case of Q∝ (Δ T n ) m

The optimal exergy-based ecological performance of a generalized irreversible Carnot refrigerator with losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective. The transfer between the working fluid and heat reservoirs obeys a generalized heat transfer law Q∝ Δ (T n ) m . Some special examples are discussed. Results include the optimal ecological performance of the irreversible Carnot refrigerator with various heat transfer laws, which were obtained in many studies, and can provide some theoretical guidelines for the design of practical refrigerators.

[1]  R. Stephen Berry,et al.  Finite-Time Thermodynamics , 2008 .

[2]  Fengrui Sun,et al.  Performance optimisation for endoreversible Carnot refrigerator with complex heat transfer law , 2008 .

[3]  F. Sun,et al.  Cooling load and co-efficient of performance optimizations for a generalized irreversible Carnot refrigerator with heat transfer law q ∞ (ΔT n ) m , 2008 .

[4]  L. Chen,et al.  Ecological optimisation of a generalised irreversible Carnot refrigerator for a generalised heat transfer law , 2007 .

[5]  Lingen Chen,et al.  Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles , 2007 .

[6]  Fengrui Sun,et al.  Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle , 2007 .

[7]  Oguz Salim Sogut,et al.  Ecological performance optimisation of a solar driven heat engine , 2006 .

[8]  Fengrui Sun,et al.  Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines , 2006 .

[9]  Fengrui Sun,et al.  Exergy-based ecological optimization for a generalized irreversible Carnot refrigerator , 2006 .

[10]  Fengrui Sun,et al.  Exergy-based ecological optimisation for an endoreversible Brayton refrigeration cycle , 2006 .

[11]  Lingen Chen,et al.  Universal ecological performance for endo-reversible heat engine cycles , 2006 .

[12]  Lingen Chen,et al.  Effect of Heat Transfer Law on the Ecological Optimization of a Generalized Irreversible Carnot Engine , 2005, Open Syst. Inf. Dyn..

[13]  Abdul Khaliq,et al.  Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle , 2005 .

[14]  S. C. Kaushik,et al.  Ecological optimisation of an irreversible regenerative intercooled Brayton heat engine with direct heat loss , 2005 .

[15]  Yasin Ust,et al.  Ecological performance analysis of an endoreversible regenerative Brayton heat-engine , 2005 .

[16]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot refrigerators , 2005 .

[17]  Brian Agnew,et al.  A finite time analysis of a cascade refrigeration system using alternative refrigerants , 2004 .

[18]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot engines , 2004 .

[19]  Lingen Chen,et al.  The ecological optimisation of a generalised irreversible Carnot engine for a generalised heat transfer law , 2003 .

[20]  S. C. Kaushik,et al.  Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines , 2002 .

[21]  Fengrui Sun,et al.  Effect of Heat Transfer Law on the Performance of a Generalized Irreversible Carnot Refrigerator , 2001 .

[22]  S. Sieniutycz,et al.  Thermodynamic Optimization of Finite-Time Processes , 2000 .

[23]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[24]  Fengrui Sun,et al.  Effect of heat transfer law on the performance of a generalized irreversible Carnot engine , 1999 .

[25]  Cha'o-Kuang Chen,et al.  The ecological optimization of an irreversible Carnot heat engine , 1997 .

[26]  Lingen Chen,et al.  A generalized model of a real refrigerator and its performance , 1997 .

[27]  Lixuan Chen,et al.  Optimization of the rate of exergy output for an endoreversible Carnot refrigerator , 1996 .

[28]  M. A. Ait‐Ali The maximum coefficient of performance of internally irreversible refrigerators and heat pumps , 1996 .

[29]  Lingen Chen,et al.  General performance characteristics of a finite-speed Carnot refrigerator , 1996 .

[30]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[31]  Cha'o-Kuang Chen,et al.  The performance of an irreversible Carnot refrigeration cycle , 1995 .

[32]  Fernando Angulo-Brown,et al.  Endoreversible thermal cycle with a nonlinear heat transfer law , 1993 .

[33]  D. C. Agrawal,et al.  Finite‐time Carnot refrigerators with wall gain and product loads , 1993 .

[34]  Zijun Yan,et al.  Comment on ‘‘An ecological optimization criterion for finite‐time heat engines’’ [J. Appl. Phys. 69, 7465 (1991)] , 1993 .

[35]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[36]  陈 文振,et al.  Q∝T~n时卡诺制冷机的最佳ε与R关系 , 1990 .

[37]  D. C. Agrawal,et al.  Performance of a Carnot refrigerator at maximum cooling power , 1990 .

[38]  Colm O'Sullivan,et al.  Newton’s law of cooling—A critical assessment , 1990 .

[39]  D. C. Agrawal,et al.  Engines and refrigerators with finite heat reservoirs , 1990 .

[40]  Reuven Chen,et al.  Competition between excitation and bleaching of thermoluminescence , 1990 .

[41]  Jincan Chen,et al.  A class of irreversible Carnot refrigeration cycles with a general heat transfer law , 1990 .

[42]  Adrian Bejan,et al.  Theory of heat transfer-irreversible refrigeration plants , 1989 .

[43]  Yan,et al.  Unified description of endoreversible cycles. , 1989, Physical review. A, General physics.

[44]  A. D. Vos,et al.  Efficiency of some heat engines at maximum-power conditions , 1985 .

[45]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .

[46]  M. Rubin Optimal configuration of an irreversible heat engine with fixed compression ratio , 1980 .

[47]  B. Andresen,et al.  Minimum entropy production and the optimization of heat engines , 1980 .

[48]  M. Rubin Optimal configuration of a class of irreversible heat engines. II , 1979 .

[49]  Itamar Procaccia,et al.  On the efficiency of rate processes. Power and efficiency of heat engines , 1978 .

[50]  Bjarne Andresen,et al.  Thermodynamics in finite time. II. Potentials for finite-time processes , 1977 .

[51]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[52]  B. Andresen,et al.  Thermodynamics in finite time: extremals for imperfect heat engines , 1977 .

[53]  Yasin Ust,et al.  Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion , 2009 .

[54]  R. Hernández,et al.  Non-endoreversible Carnot refrigerator at maximum cooling power , 2006 .

[55]  D. Ladino-Luna,et al.  Non-endoreversible Carnot refrigerator at maximum cooling power , 2005 .

[56]  Sun Feng-rui,et al.  Ecological optimization of endoreversible air refrigerator , 2005 .

[57]  Bahri Sahin,et al.  Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics , 2004 .

[58]  Peter Salamon,et al.  Thermodynamic optimization of finite time processes , 2001 .

[59]  M. Feidt Thermodynamics and Optimization of Reverse Cycle Machines , 1999 .

[60]  Lawrence S. Chen 98/00669 Influence of internal heat leak on the performance of refrigerators , 1998 .

[61]  Cha'o-Kuang Chen,et al.  Ecological optimization of an endoreversible Brayton cycle , 1998 .

[62]  F. Sun,et al.  The influence of heat-transfer law on the endo-reversible Carnot refrigerator , 1996 .

[63]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[64]  Giuseppe Grazzini,et al.  Irreversible refrigerators with isothermal heat exchanges , 1993 .

[65]  J. Torres Minimal rate of entropy production as a criterion of merit for thermal engines , 1988 .

[66]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .