Inverse, Shifted Inverse, and Rayleigh Quotient Iteration as Newton's Method
暂无分享,去创建一个
[1] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[2] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[3] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .
[4] M. J. D. Powell,et al. A fast algorithm for nonlinearly constrained optimization calculations , 1978 .
[5] S. H. Crandall. Iterative procedures related to relaxation methods for eigenvalue problems , 1951 .
[6] F. Chatelin. Simultaneous Newton’s Iteration for the Eigenproblem , 1984 .
[7] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations , 1943 .
[8] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[9] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[10] E. Pohlhausen,et al. Berechnung der Eigenschwingungen statisch‐bestimmter Fachwerke , 1921 .
[11] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[12] Ilse C. F. Ipsen. A history of inverse iteration , 1994 .
[13] Shih-Ping Han. A globally convergent method for nonlinear programming , 1975 .
[14] R. Fletcher. Practical Methods of Optimization , 1988 .
[15] M. Gutzwiller,et al. Moon-Earth-Sun: The oldest three-body problem , 1998 .
[16] J. H. Wilkinson,et al. Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .
[17] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[18] R. Tapia. On secant updates for use in general constrained optimization , 1988 .
[19] H. Wielandt. Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben , 1944 .
[20] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[21] Olvi L. Mangasarian,et al. Superlinearly convergent quasi-newton algorithms for nonlinearly constrained optimization problems , 1976, Math. Program..
[22] A. M. Ostrowski,et al. On the convergence of the rayleigh quotient iteration for the computation of the characteristic roots and vectors. II , 1958 .
[23] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[24] L. B. Rall,et al. The solution of characteristic value-vector problems by Newton's method , 1968 .
[25] Shih-Ping Han,et al. Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..
[26] Y. Saad,et al. Numerical Methods for Large Eigenvalue Problems , 2011 .
[27] A. C. Aitken. XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .
[28] Ilse C. F. Ipsen. Helmut Wielandt's contributions to the numerical solution of complex eigenvalue problems , 1994 .
[29] L. W.,et al. The Theory of Sound , 1898, Nature.
[30] L. Collatz. Functional analysis and numerical mathematics , 1968 .
[31] J. E. Dennis,et al. On Newton-like methods , 1968 .
[32] J. H. Wilkinson,et al. IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .
[33] R. A. Tapia,et al. QUASI-NEWTON METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION: EQUIVALENCE OF EXISTING METHODS AND A NEW IMPLEMENTATION , 1978 .
[34] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[35] M. Hestenes. Multiplier and gradient methods , 1969 .
[36] F. Chatelin. ILL Conditioned Eigenproblems , 1986 .
[37] James Hardy Wilkinson,et al. The Calculation of the Eigenvectors of Codiagonal Matrices , 1958, Comput. J..
[38] W. Kohn. A Variational Iteration Method for Solving Secular Equations , 1949 .
[39] Richard A. Tapia,et al. The Projected Newton Method Has Order $1 + \sqrt 2 $ for the Symmetric Eigenvalue Problem , 1988 .
[40] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[41] Richard A. Tapia,et al. Origin and Evolution of the Secant Method in One Dimension , 2013, Am. Math. Mon..
[42] M. J. D. Powell,et al. THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .