Taggle: Combining overview and details in tabular data visualizations

Most tabular data visualization techniques focus on overviews, yet many practical analysis tasks are concerned with investigating individual items of interest. At the same time, relating an item to the rest of a potentially large table is important. In this work, we present Taggle, a tabular visualization technique for exploring and presenting large and complex tables. Taggle takes an item-centric, spreadsheet-like approach, visualizing each row in the source data individually using visual encodings for the cells. At the same time, Taggle introduces data-driven aggregation of data subsets. The aggregation strategy is complemented by interaction methods tailored to answer specific analysis questions, such as sorting based on multiple columns and rich data selection and filtering capabilities. We demonstrate Taggle by a case study conducted by a domain expert on complex genomics data analysis for the purpose of drug discovery.

[1]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[2]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[3]  Alexander Lex,et al.  Juniper: A Tree+Table Approach to Multivariate Graph Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[5]  Thomas Zichner,et al.  Ordino: a visual cancer analysis tool for ranking and exploring genes, cell lines and tissue samples , 2019, Bioinform..

[6]  Heidrun Schumann,et al.  Visualizing uncertainty in biological expression data , 2012, Visualization and Data Analysis.

[7]  Dieter Schmalstieg,et al.  VisBricks: Multiform Visualization of Large, Inhomogeneous Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[8]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  Dieter Schmalstieg,et al.  Comparative Analysis of Multidimensional, Quantitative Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[11]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[12]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[13]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[14]  Jarke J. van Wijk,et al.  Flexible Linked Axes for Multivariate Data Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[15]  Chandler Stolp,et al.  The Visual Display of Quantitative Information , 1983 .

[16]  Marc Streit,et al.  Points of View: Bar charts and box plots , 2014, Nature Methods.

[17]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[18]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[19]  Jeffrey Heer,et al.  Animated Transitions in Statistical Data Graphics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[20]  A. Adithya Parallel Coordinates , 2015 .

[21]  Giuseppe Carenini,et al.  ValueCharts: analyzing linear models expressing preferences and evaluations , 2004, AVI.

[22]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[23]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[24]  Gilles Caraux,et al.  PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order , 2005, Bioinform..

[25]  Chris North,et al.  Multiple foci drill-down through tuple and attribute aggregation polyarchies in tabular data , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[26]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2002, Computer.

[27]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[28]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[29]  Michael Spenke,et al.  InfoZoom − Analysing Formula One racing results with an interactive data mining and visualisation tool , 2000 .

[30]  Hanspeter Pfister,et al.  LineUp: Visual Analysis of Multi-Attribute Rankings , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  Heidrun Schumann,et al.  Axes-based visualizations with radial layouts , 2004, SAC '04.

[32]  Thomas Berlage,et al.  FOCUS: the interactive table for product comparison and selection , 1996, UIST '96.

[33]  Adeeb Rahman,et al.  Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data , 2017, Scientific Data.

[34]  Alexander Lex,et al.  Interactive visual exploration and refinement of cluster assignments , 2017, BMC Bioinformatics.

[35]  Alexander Lex,et al.  Lineage: Visualizing Multivariate Clinical Data in Genealogy Graphs , 2017, bioRxiv.

[36]  Thomas Zichner,et al.  TourDino: A Support View for Confirming Patterns in Tabular Data , 2019, EuroVA@EuroVis.

[37]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[38]  Jeffrey Heer,et al.  Interpretation and trust: designing model-driven visualizations for text analysis , 2012, CHI.

[39]  Hans Bitter,et al.  A distinct p53 target gene set predicts for response to the selective p53–HDM2 inhibitor NVP-CGM097 , 2015, eLife.

[40]  Helwig Hauser,et al.  Parallel Sets: interactive exploration and visual analysis of categorical data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[41]  David Haussler,et al.  The UCSC Genome Browser database: 2017 update , 2016, Nucleic Acids Res..

[42]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[43]  Alexander Lex,et al.  Origraph: Interactive Network Wrangling , 2018, 2019 IEEE Conference on Visual Analytics Science and Technology (VAST).

[44]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[45]  Marc Streit,et al.  Furby: fuzzy force-directed bicluster visualization , 2014, BMC Bioinformatics.

[46]  Jeffrey Heer,et al.  Online Submission ID : 0 Orion : A System for Modeling , Transformation and Visualization of Multidimensional Heterogeneous Networks , 2012 .

[47]  Hanspeter Pfister,et al.  Domino: Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular Datasets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[48]  Tim Kraska,et al.  Investigating the Effect of the Multiple Comparisons Problem in Visual Analysis , 2018, CHI.

[49]  Boris Müller,et al.  Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions , 2016, IEEE Transactions on Visualization and Computer Graphics.

[50]  Niklas Elmqvist,et al.  Keshif: Rapid and Expressive Tabular Data Exploration for Novices , 2018, IEEE Transactions on Visualization and Computer Graphics.

[51]  Pierre Dragicevic,et al.  Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support , 2018, IEEE Transactions on Visualization and Computer Graphics.

[52]  Hanspeter Pfister,et al.  UpSet: Visualization of Intersecting Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[53]  Chun-Houh Chen,et al.  GAP: A graphical environment for matrix visualization and cluster analysis , 2010, Comput. Stat. Data Anal..

[54]  Leland Wilkinson,et al.  The History of the Cluster Heat Map , 2009 .

[55]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[56]  Toniann Pitassi,et al.  The reusable holdout: Preserving validity in adaptive data analysis , 2015, Science.

[57]  Rehan Akbani,et al.  Integrated Molecular Characterization of Uterine Carcinosarcoma. , 2017, Cancer cell.

[58]  Daniel A. Keim,et al.  SMARTexplore: Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach , 2018, 2018 IEEE Conference on Visual Analytics Science and Technology (VAST).

[59]  Dieter Schmalstieg,et al.  StratomeX: Visual Analysis of Large‐Scale Heterogeneous Genomics Data for Cancer Subtype Characterization , 2012, Comput. Graph. Forum.

[60]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  John T. Stasko,et al.  Ploceus: Modeling, visualizing, and analyzing tabular data as networks , 2014, Inf. Vis..

[62]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[63]  Charles Perin,et al.  Revisiting Bertin Matrices: New Interactions for Crafting Tabular Visualizations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[64]  Michael J. McGuffin,et al.  GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[65]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[66]  Chris Weaver Building Highly-Coordinated Visualizations in Improvise , 2004, IEEE Symposium on Information Visualization.

[67]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[68]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[69]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[70]  Kay Nieselt,et al.  iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data , 2012, BMC Bioinformatics.

[71]  Dieter Schmalstieg,et al.  Guided visual exploration of genomic stratifications in cancer , 2014, Nature Methods.