Thermomechanical stress fields in high-temperature fibrous composites. I: Unidirectional laminates

Abstract This two-part paper presents a closed-form procedure for evaluation of estimates of local thermomechanical stress fields in two-phase fibrous composites and laminates. The first part is concerned with a unidirectional elastic laminate subjected to uniform mechanical loads and to uniform changes in temperature. Both phases are assumed to be elastic, with temperature-dependent moduli and expansion coefficients; the solution reflects the influence of thermomechanical interactions. Exact solutions are not possible for any real system, because the local geometry is not known in detail. Instead, estimates of the fields are found from a modified Mori-Tanaka approximation. Examples are presented for two SiC/TiAlNb composites. Local stresses of interest are found after cooling from fabrication to room temperature. The presence of local yielding, and the influence of coupling terms on the local stress magnitudes are examined. Extension of the results to laminated plates is presented in Part II (Dvorak, G.J., Chen, T. & Teply, J., Composites Science and Technology, 43 (1992) 359–368, this issue).

[1]  Rodney Hill,et al.  Interfacial operators in the mechanics of composite media , 1983 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Tungyang Chen,et al.  Stress fields in composites with coated inclusions , 1989 .

[4]  George J. Dvorak,et al.  Bounds on overall instantaneous properties of elastic-plastic composites , 1988 .

[5]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[6]  N. Laws On interfacial discontinuities in elastic composites , 1975 .

[7]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[8]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[9]  G. Dvorak,et al.  Thermomechanical stress fields in high-temperature fibrous composites. II: Laminated plates , 1992 .

[10]  L. Walpole,et al.  A coated inclusion in an elastic medium , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  G. Dvorak,et al.  On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites , 1990 .

[12]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[13]  T. Mura,et al.  Elastic fields of inclusions in anisotropic media , 1971 .

[14]  G. Dvorak Thermal Expansion of Elastic-Plastic Composite Materials. , 1986 .

[15]  G. Tandon,et al.  Stress Distribution in and Around Spheroidal Inclusions and Voids at Finite Concentration , 1986 .

[16]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .