Laser vibrometry measurements of an optically smooth rotating spindle

Abstract Laser doppler vibrometry (LDV) is a well-established non-contact method, commonly used for vibration measurements on static objects. However, the method has limitations when applied to rotating objects. The LDV signal will contain periodically repeated speckle noise and a mix of vibration velocity components. In this paper, the crosstalk between vibration velocity components in laser vibrometry measurements of a rotating dummy tool in a milling machine spindle is studied. The spindle is excited by an active magnetic bearing (AMB) and the response is measured by LDV in one direction and inductive displacement sensors in two orthogonal directions simultaneously. The work shows how the LDV crosstalk problem can be avoided if the measurement surface is optically smooth, hence the LDV technique can be used when measuring spindle dynamics.