Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

Abstract. The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002–2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002–2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes – including those from passive degassing, Strombolian activity and minor explosions – lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2–8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm−2 at distances of 150–400 km from the volcano, with much greater local (

[1]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[2]  H. Grassl,et al.  A search for large‐scale effects of ship emissions on clouds and radiation in satellite data , 2011 .

[3]  Tom Simkin,et al.  Volcanoes of the World , 2011 .

[4]  K. Sassen Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.

[5]  Jonathan P. Taylor,et al.  Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks. , 2000 .

[6]  Roy G. Grainger,et al.  Automatic detection of ship tracks in ATSR-2 satellite imagery , 2009 .

[7]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[8]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[9]  Tamsin A. Mather,et al.  Characterization and evolution of tropospheric plumes from Lascar and Villarrica volcanoes, Chile , 2004 .

[10]  M. Andreae Aerosols Before Pollution , 2007, Science.

[11]  D. Coppola,et al.  Satellite‐based evidence for a large hydrothermal system at Piton de la Fournaise volcano (Reunion Island) , 2011 .

[12]  T. Elias,et al.  Sulfur dioxide emission rates from Kilauea Volcano, Hawaii, 2007-2010 , 2012 .

[13]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[14]  M. King,et al.  Composite ship track characteristics , 2000 .

[15]  Steffen Beirle,et al.  Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002 , 2004 .

[16]  P. Field,et al.  Precipitation and Cloud Structure in Midlatitude Cyclones , 2007 .

[17]  Tamar Elias,et al.  Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 2002-2006 , 2002 .

[18]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[19]  S. Carn,et al.  First estimate of volcanic SO2 budget for Vanuatu island arc , 2012 .

[20]  Philip Stier,et al.  Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data , 2012 .

[21]  A. Robock Pinatubo eruption. The climatic aftermath. , 2002, Science.

[22]  V. K. Rai,et al.  Oxygen and sulfur isotopic composition of volcanic sulfate aerosol at the point of emission , 2006 .

[23]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[24]  Michel Lardy,et al.  Sulphur dioxide emission rates from Yasur volcano, Vanuatu archipelago , 2007 .

[25]  Tom Simkin,et al.  Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions , 2013 .

[26]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[28]  U. Lohmann,et al.  Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds , 2010 .

[29]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[30]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[31]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[32]  Johannes Quaas,et al.  Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model , 2009 .

[33]  D. Eatough,et al.  The Conversion of SO2 to Sulfate in the Atmosphere , 1994 .

[34]  S. Sherwood,et al.  Climate Effects of Aerosol-Cloud Interactions , 2014, Science.

[35]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[36]  S. Gassó Satellite observations of the impact of weak volcanic activity on marine clouds , 2008 .

[37]  Tamsin A. Mather,et al.  Tropospheric Volcanic Aerosol , 2013 .

[38]  N. Villeneuve,et al.  Large scale modeling of the transport, chemical transformation and mass budget of the sulfur emitted during the April 2007 eruption of Piton de la Fournaise , 2011 .

[39]  G. Mann,et al.  The impact of the 1783-1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei , 2010 .

[40]  Philip Watts,et al.  Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment , 2010 .

[41]  Philip Stier,et al.  A critical look at spatial scale choices in satellite-based aerosol indirect effect studies , 2010 .

[42]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[43]  G. Mann,et al.  Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate , 2012 .

[44]  J. Seinfeld,et al.  Occurrence of lower cloud albedo in ship tracks , 2012 .

[45]  Alexander Smirnov,et al.  Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network , 2011 .

[46]  Hiroshi Shinohara,et al.  Magma and volatile supply to post-collapse volcanism and block resurgence in Siwi Caldera (Tanna Island, Vanuatu Arc) , 2011 .

[47]  P. Adams,et al.  Efficiency of cloud condensation nuclei formation from ultrafine particles , 2006 .

[48]  R. Grainger,et al.  Relationship between wind speed and aerosol optical depth over remote ocean , 2009 .

[49]  P. Mouginis-Mark,et al.  Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu'u O'o vent: Aerosol flux and SO2 lifetime , 2002 .

[50]  J. Jiusto Aerosol and cloud microphysics measurements in Hawaii , 1967 .

[51]  Brent N. Holben,et al.  An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation , 2010 .

[52]  Tamsin A. Mather,et al.  Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes , 2008 .

[53]  Bryan Lawrence,et al.  The GRAPE aerosol retrieval algorithm , 2009 .

[54]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[55]  Hanna Pawlowska,et al.  Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate , 2003 .

[56]  A. McGonigle,et al.  Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua , 2002 .

[57]  C. G. Newhall,et al.  The Climatic Aftermath , 2002 .

[58]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[59]  T. Gerlach,et al.  The airborne lava-seawater interaction plume at Kīlauea Volcano, Hawaiʻi , 2006 .

[60]  R. Grainger,et al.  Passive volcanic degassing and cloud properties , 2014 .

[61]  R. S. Martin,et al.  Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawai`i , 2012 .

[62]  D. Coppola,et al.  Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data , 2009 .

[63]  M. Bessafi,et al.  Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: Implications for human health and environmental changes , 2009 .

[64]  Aline Peltier,et al.  Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data , 2009 .

[65]  P. Stier,et al.  The effect of extratropical cyclones on satellite‐retrieved aerosol properties over ocean , 2011 .

[66]  Johann Feichter,et al.  The contribution of Earth degassing to the atmospheric sulfur budget , 1998 .

[67]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[68]  M. Christensen,et al.  Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening , 2011 .

[69]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[70]  Roy G. Grainger,et al.  A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals , 2010 .

[71]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[72]  Cynthia H. Twohy,et al.  Effect of changes in relative humidity on aerosol scattering near clouds , 2008 .

[73]  Clive Oppenheimer,et al.  Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts , 2011 .

[74]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[75]  G. Mann,et al.  The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei , 2013 .

[76]  Gill Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate , 2006 .

[77]  Tom Simkin,et al.  Volcanoes of the World: Third Edition , 2011 .

[78]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[79]  Tianle Yuan,et al.  Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train , 2011 .

[80]  Richard Siddans,et al.  Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR , 2011 .