Machine Learning Approaches Based on Fibroblast Morphometry Do Not Predict ALS

[1]  J. Rothstein,et al.  Nuclear pore complexes — a doorway to neural injury in neurodegeneration , 2022, Nature Reviews Neurology.

[2]  Samuel J. Yang,et al.  Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts , 2022, Nature Communications.

[3]  M. Herrando-Grabulosa,et al.  TDP-43 Cytoplasmic Translocation in the Skin Fibroblasts of ALS Patients , 2022, Cells.

[4]  J. Halmai,et al.  The iNs and Outs of Direct Reprogramming to Induced Neurons , 2020, Frontiers in Genome Editing.

[5]  F. Fornai,et al.  Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons , 2020, Neurobiology of Disease.

[6]  L. Zolla,et al.  ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. , 2020, Cellular signalling.

[7]  M. Berciano,et al.  ALS-derived fibroblasts exhibit reduced proliferation rate, cytoplasmic TDP-43 aggregation and a higher susceptibility to DNA damage , 2020, Journal of Neurology.

[8]  S. Wilton,et al.  ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? , 2019, Front. Neurosci..

[9]  Thomas J. Fuchs,et al.  Clinical-grade computational pathology using weakly supervised deep learning on whole slide images , 2019, Nature Medicine.

[10]  Samuel J. Yang,et al.  Applying Deep Neural Network Analysis to High-Content Image-Based Assays , 2019, SLAS discovery : advancing life sciences R & D.

[11]  Timothy A. Miller,et al.  Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia , 2019, bioRxiv.

[12]  G. Lenaers,et al.  Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions , 2018, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[13]  L. Van Den Bosch,et al.  Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells , 2017, Front. Neurosci..

[14]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis , 2017, The Lancet.

[15]  Ernesto Picardi,et al.  Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS , 2017, Scientific Reports.

[16]  I. Blair,et al.  Evaluation of Skin Fibroblasts from Amyotrophic Lateral Sclerosis Patients for the Rapid Study of Pathological Features , 2015, Neurotoxicity Research.

[17]  P. Rossini,et al.  Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations , 2015, Neurobiology of Aging.

[18]  S. Ono,et al.  Abundant FUS‐immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis , 2013, Acta neurologica Scandinavica.

[19]  H. Ishikawa,et al.  Increased expression of TDP‐43 in the skin of amyotrophic lateral sclerosis , 2010, Acta neurologica Scandinavica.

[20]  C. Carcassi,et al.  Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. , 2016, Human molecular genetics.