Computationally Efficient Spatial Interpolators Based on Spartan Spatial Random Fields

This paper addresses the spatial interpolation of scattered data in d dimensions. The problem is approached using the theory of Spartan spatial random fields (SSRFs), focusing on a specific Gaussian SSRF, i.e., the fluctuation-gradient-curvature (FGC) model. A family of spatial interpolators (predictors) is formulated by maximizing the FGC-SSRF probability density function at each prediction point, conditioned by the data. An analytical expression for the general uniform bandwidth Spartan (GUBS) predictor is derived. The linear weights of this predictor involve weighted summations of kernel functions over the sample and prediction points. Approximations for the sums are obtained at the asymptotic limit of a dense sampling network, leading to simplified explicit expressions of the weights. An asymptotic locally adaptive Spartan (ALAS) predictor is defined by means of a kernel family that involves a tunable local parameter. The relevant equations are fully developed in d=2. Using simulated data in two dimensions, we show that the ALAS prediction accuracy is comparable to that of ordinary kriging (OK), which is an optimal spatial linear predictor (SOLP). The numerical complexity of the ALAS predictor increases linearly with the sample size, in contrast with the cubic dependence of OK. For large data sets, the ALAS predictor is shown to be orders of magnitude faster than OK at the cost of a slightly higher prediction dispersion. The performance of the ALAS predictor and OK are compared on a data set of rainfall measurements using cross validation measures.

[1]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[2]  Juan Ruiz-Alzola,et al.  Geostatistical Medical Image Registration , 2003, MICCAI.

[3]  Dan Schonfeld,et al.  Image Reconstruction and Multidimensional Field Estimation From Randomly Scattered Sensors , 2008, IEEE Transactions on Image Processing.

[4]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[5]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[6]  D. Sandwell BIHARMONIC SPLINE INTERPOLATION OF GEOS-3 AND SEASAT ALTIMETER DATA , 1987 .

[7]  Philip Lewis,et al.  Geostatistical classification for remote sensing: an introduction , 2000 .

[8]  George E. Karniadakis,et al.  Gappy data: To Krig or not to Krig? , 2006, J. Comput. Phys..

[9]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[10]  Chris L. Farmer,et al.  Bayesian Field Theory Applied to Scattered Data Interpolation and Inverse Problems , 2007 .

[11]  Michael Unser,et al.  Mate/spl acute/rn B-splines and the optimal reconstruction of signals , 2006, IEEE Signal Processing Letters.

[12]  Dimitri Van De Ville,et al.  Non-Ideal Sampling and Adapted Reconstruction Using the Stochastic Matern Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[13]  Michael W.D. Davis,et al.  Kriging in a global neighborhood , 1984 .

[14]  Rob W. Parrott,et al.  Towards statistically optimal interpolation for 3D medical imaging , 1993, IEEE Engineering in Medicine and Biology Magazine.

[15]  N. Cressie The origins of kriging , 1990 .

[16]  Jennifer L. Dungan,et al.  Kriging in the shadows: Geostatistical interpolation for remote sensing , 1994 .

[17]  D. T. Hristopulos,et al.  Geostatistical Applications of Spartan Spatial Random Fields , 2008 .

[18]  Dionissios T. Hristopulos,et al.  An application of Spartan spatial random fields in environmental mapping: focus on automatic mapping capabilities , 2008 .

[19]  S. SIAMJ. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .

[20]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[21]  Feng Gui,et al.  Application of variogram function in image analysis , 2004, Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP '04. 2004..

[22]  M. Sahimi,et al.  Generation of long-range correlations in large systems as an optimization problem. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Dionissios T. Hristopulos,et al.  Spartan gaussian random fields for geostatistical applications: Non-constrained simulations on square lattices and irregular grids , 2005, J. Comput. Methods Sci. Eng..

[24]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[25]  Jan P. Allebach,et al.  Iterative reconstruction of bandlimited images from nonuniformly spaced samples , 1987 .

[26]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[27]  Interpolation Schemes for Three-Dimensional Velocity Fields from Scattered Data Using Taylor Expansions , 1995 .

[28]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[29]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[30]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[31]  Keith J. Worsley,et al.  Applications of Random Fields in Human Brain Mapping , 2001 .

[32]  Michael Edward Hohn,et al.  Geostatistics and Petroleum Geology , 1988 .

[33]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[34]  Dionissios T. Hristopulos Approximate methods for explicit calculations of non-Gaussian moments , 2006 .

[35]  Dionissios T. Hristopulos,et al.  Nonparametric Identification of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets , 2008, IEEE Transactions on Signal Processing.

[36]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[37]  H. Mitásová,et al.  Interpolation by regularized spline with tension: I. Theory and implementation , 1993 .

[38]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[39]  R. Franke Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .

[40]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[41]  G. Wahba Spline models for observational data , 1990 .

[42]  Ted Chang,et al.  Introduction to Geostatistics: Applications in Hydrogeology , 2001, Technometrics.

[43]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[44]  Mark Crovella,et al.  Network Kriging , 2005, IEEE Journal on Selected Areas in Communications.

[45]  R. M. Lark,et al.  Estimating Variogram Uncertainty , 2004 .

[46]  Dionissios T. Hristopulos,et al.  Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields , 2006, IEEE Transactions on Information Theory.

[47]  Juan Ruiz-Alzola,et al.  Kriging filters for multidimensional signal processing , 2005, Signal Process..

[48]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[49]  Tian-Chyi J. Yeh,et al.  Applied Stochastic Hydrogeology. , 2005 .

[50]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[51]  Thierry Blu,et al.  Generalized smoothing splines and the optimal discretization of the Wiener filter , 2005, IEEE Transactions on Signal Processing.

[52]  Ian Briggs Machine contouring using minimum curvature , 1974 .