In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes

Supplemental Digital Content is available in the text.

[1]  Michael Cutler,et al.  New experimental evidence for mechanism of arrhythmogenic membrane potential alternans based on balance of electrogenic I(NCX)/I(Ca) currents. , 2012, Heart rhythm.

[2]  H. Hayashi,et al.  Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles. , 2003 .

[3]  Ben Hanson,et al.  Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects. , 2014, Progress in biophysics and molecular biology.

[4]  Sanjiv M Narayan,et al.  T-wave alternans, restitution of human action potential duration, and outcome. , 2007, Journal of the American College of Cardiology.

[5]  J. Ingwall,et al.  An Improved Isolation Procedure for Adult Mouse Cardiomyocytes , 2011, Cell Biochemistry and Biophysics.

[6]  A. A. Armoundas,et al.  Can microvolt T-wave alternans testing reduce unnecessary defibrillator implantation? , 2005, Nature Clinical Practice Cardiovascular Medicine.

[7]  D. Bers,et al.  A novel computational model of the human ventricular action potential and Ca transient. , 2010, Journal of Molecular and Cellular Cardiology.

[8]  Alexander G. Fletcher,et al.  Chaste: A test-driven approach to software development for biological modelling , 2009, Comput. Phys. Commun..

[9]  B. Rodríguez,et al.  Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology , 2013, Proceedings of the National Academy of Sciences.

[10]  Stanley Nattel,et al.  Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. , 2004, Heart rhythm.

[11]  E. Sobie Parameter sensitivity analysis in electrophysiological models using multivariable regression. , 2009, Biophysical journal.

[12]  Gary R. Mirams,et al.  mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study , 2013, PloS one.

[13]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[14]  Zhilin Qu,et al.  Calcium alternans in cardiac myocytes: order from disorder. , 2013, Journal of molecular and cellular cardiology.

[15]  J. Levijoki,et al.  ORM‐10103, a novel specific inhibitor of the Na+/Ca2+ exchanger, decreases early and delayed afterdepolarizations in the canine heart , 2013, British journal of pharmacology.

[16]  Antonis A Armoundas,et al.  Role of Substrate and Triggers in the Genesis of Cardiac Alternans, From the Myocyte to the Whole Heart: Implications for Therapy , 2012, Circulation.

[17]  M. Rosen Why T waves change: a reminiscence and essay. , 2009, Heart rhythm.

[18]  Daisuke Sato,et al.  Cardiac Electrophysiological Dynamics From the Cellular Level to the Organ Level , 2013, Biomedical engineering and computational biology.

[19]  David S. Rosenbaum,et al.  Circadian rhythms govern cardiac repolarization and arrhythmogenesis , 2012, Nature.

[20]  Antonis A Armoundas,et al.  Pathophysiological basis and clinical application of T-wave alternans. , 2002, Journal of the American College of Cardiology.

[21]  Alan Garfinkel,et al.  Spark-Induced Sparks As a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes , 2010, Circulation research.

[22]  A. Garfinkel,et al.  T-Wave Alternans and Arrhythmogenesis in Cardiac Diseases , 2010, Front. Physio..

[23]  Roger J Hajjar,et al.  Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans , 2009, Circulation. Arrhythmia and electrophysiology.

[24]  H. Valdivia Mechanisms of cardiac alternans in atrial cells: intracellular Ca2⁺ disturbances lead the way. , 2015, Circulation research.

[25]  A. Escobar,et al.  Cardiac alternans and ventricular fibrillation: a bad case of ryanodine receptors reneging on their duty. , 2014, Circulation Research.

[26]  Alan Garfinkel,et al.  Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. , 2008, Biophysical journal.

[27]  K H W J Ten Tusscher,et al.  Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions , 2006, Physics in medicine and biology.

[28]  M. Diaz,et al.  Integrative Analysis of Calcium Cycling in Cardiac Muscle , 2000, Circulation research.

[29]  M. Diaz,et al.  Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans , 2004, Circulation research.

[30]  Yoram Rudy,et al.  Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation , 2011, PLoS Comput. Biol..

[31]  Donald M Bers,et al.  Optical Mapping of Sarcoplasmic Reticulum Ca2+ in the Intact Heart: Ryanodine Receptor Refractoriness During Alternans and Fibrillation , 2014, Circulation research.

[32]  Y. Ladilov,et al.  Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. , 2001, Cardiovascular research.

[33]  M. Cutler,et al.  Targeted Sarcoplasmic Reticulum Ca2+ ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart , 2012, Circulation.

[34]  Donald M Bers,et al.  Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations , 2006, Circulation research.

[35]  Trine Krogh-Madsen,et al.  Cell-Specific Cardiac Electrophysiology Models , 2015, PLoS Comput. Biol..

[36]  H. Hayashi,et al.  Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles , 2004, Molecular and Cellular Biochemistry.

[37]  L. Blatter,et al.  The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. , 2015, Circulation research.

[38]  Joshua I. Goldhaber,et al.  Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes: The Key Role of Intracellular Calcium Cycling , 2005, Circulation research.

[39]  David S. Rosenbaum,et al.  Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans , 2004, Circulation research.

[40]  T. Opthof,et al.  Validation of a simple model for the morphology of the T wave in unipolar electrograms. , 2009, American journal of physiology. Heart and circulatory physiology.

[41]  Jaswinder S. Gill,et al.  In Vivo Human Left-to-Right Ventricular Differences in Rate Adaptation Transiently Increase Pro-Arrhythmic Risk following Rate Acceleration , 2012, PloS one.

[42]  Martyn P. Nash,et al.  Evidence for Multiple Mechanisms in Human Ventricular Fibrillation , 2006, Circulation.

[43]  M. Cutler,et al.  Risk stratification for sudden cardiac death: is there a clinical role for T wave alternans? , 2009, Heart rhythm.

[44]  Robert F Gilmour,et al.  Ionic mechanism of electrical alternans. , 2002, American journal of physiology. Heart and circulatory physiology.

[45]  Donald M Bers,et al.  Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes , 2003, Circulation research.

[46]  Pier D. Lambiase,et al.  Anger, Emotion, and Arrhythmias: from Brain to Heart , 2011, Front. Physio..