CONTINUOUS DEPENDENCE ON DATA FOR VIBRO-IMPACT PROBLEMS

We consider vibro-impact problems, i.e. mechanical systems with a finite number of degrees of freedom subject to frictionless unilateral constraints. The dynamics is described by a second-order measure differential inclusion completed by an impact law of Newton's type. Motivated by the computation of approximate solutions, we study in this paper the continuous dependence of solutions on data. When several constraints can be active at the same time, continuity on data does not hold in general and an example of such a behavior is presented. We then propose a criterion involving the geometry of the active constraints along the limit trajectory which ensures continuity on data.

[1]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[2]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[3]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[4]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[5]  R. Luciano,et al.  Stress-penalty method for unilateral contact problems: mathematical formulation and computational aspects , 1994 .

[6]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[8]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[9]  B. Brogliato,et al.  Numerical simulation of finite dimensional multibody nonsmooth mechanical systems , 2001 .

[10]  J. Moreau Standard Inelastic Shocks and the Dynamics of Unilateral Constraints , 1985 .

[11]  J. Moreau Numerical Experiments in Granular Dynamics: Vibration-Induced Size Segregation , 1995 .

[12]  Michelle Schatzman Penalty method for impact in generalized coordinates , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[14]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[15]  R. Ellis,et al.  Two Numerical Issues in Simulating Constrained Robot Dynamics , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[16]  T. H. Hildebrandt Introduction to the theory of integration , 1963 .

[17]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[18]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[19]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .