The constancy of ζ in single-clock Inflation at all loops

[1]  P. Monni,et al.  On the excess in the inclusive W+W−→l+l−νν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {W}^{+}{W}^{-}\ \to\ {l}^{ , 2015, Journal of High Energy Physics.

[2]  M. Zaldarriaga,et al.  On loops in inflation II: IR effects in single clock inflation , 2012, 1203.6354.

[3]  Junpu Wang,et al.  Solid Inflation , 2012, 1210.0569.

[4]  M. Zaldarriaga,et al.  A note on the consistency condition of primordial fluctuations , 2012, 1203.6884.

[5]  M. Zaldarriaga,et al.  On loops in inflation III: time independence of ζ in single clock inflation , 2012, 1203.6651.

[6]  L. Senatore,et al.  Universality of the volume bound in slow-roll eternal inflation , 2011, 1111.1725.

[7]  S. Giddings,et al.  Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes , 2011, 1109.1000.

[8]  M. Zaldarriaga,et al.  The effective field theory of multifield inflation , 2010, Journal of High Energy Physics.

[9]  S. Giddings,et al.  Cosmological observables, infrared growth of fluctuations, and scale-dependent anisotropies , 2011, 1104.0002.

[10]  A. Hebecker,et al.  Inflationary correlation functions without infrared divergences , 2011, 1102.0560.

[11]  S. Giddings,et al.  Semiclassical relations and IR effects in de Sitter and slow-roll space-times , 2010, 1005.1056.

[12]  A. Hebecker,et al.  Inflationary infrared divergences: geometry of the reheating surface vs. δN formalism , 2010, 1005.3307.

[13]  M. Zaldarriaga,et al.  On loops in inflation , 2009, 0912.2734.

[14]  L. Senatore,et al.  The volume of the universe after inflation and de Sitter entropy , 2008, 0812.2246.

[15]  F. Vernizzi,et al.  O ct 2 00 5 Conserved non-linear quantities in cosmology , 2009 .

[16]  M. Zaldarriaga,et al.  The phase transition to eternal inflation , 2008, 0802.1067.

[17]  J. Kaplan,et al.  On the consistency relation of the three-point function in single-field inflation , 2007, 0709.0295.

[18]  Jared Kaplan,et al.  The Effective Field Theory of Inflation , 2007, 0709.0293.

[19]  F. Vernizzi,et al.  Conserved nonlinear quantities in cosmology , 2005, astro-ph/0509078.

[20]  Karim A. Malik,et al.  A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.

[21]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.