Experimental study of active LRC circuits with PT symmetries

Mutually coupled modes of a pair of active LRC circuits, one with amplification and another with an equivalent amount of attenuation, provide an experimental realization of a wide class of systems where gain and loss mechanisms break the Hermiticity while preserving parity-time PT symmetry. For a value {gamma}{sub PT} of the gain and loss strength parameter the eigenfrequencies undergo a spontaneous phase transition from real to complex values, while the normal modes coalesce, acquiring a definite chirality. The consequences of the phase transition in the spatiotemporal energy evolution are also presented.

[1]  Scattering in PT-symmetric quantum mechanics , 2006, quant-ph/0606129.

[2]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[3]  H J Korsch,et al.  Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer. , 2008, Physical review letters.

[4]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[5]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[6]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[7]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[8]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[9]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[10]  S. Longhi,et al.  Bloch oscillations in complex crystals with PT symmetry. , 2009, Physical review letters.

[11]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[14]  Ragnar Fleischmann,et al.  Exponentially fragile PT symmetry in lattices with localized eigenmodes. , 2009, Physical review letters.

[15]  H. Schomerus Quantum noise and self-sustained radiation of PT-symmetric systems. , 2010, Physical review letters.

[16]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[17]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[18]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[19]  Oleg N. Kirillov,et al.  Exceptional points in a microwave billiard with time-reversal invariance violation. , 2010, Physical review letters.

[20]  A. Mostafazadeh Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.

[21]  Demetrios N. Christodoulides,et al.  PT optical lattices and universality in beam dynamics , 2010 .

[22]  Y. Kivshar,et al.  Nonlinear suppression of time reversals in PT-symmetric optical couplers , 2010, 1009.5428.

[23]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[24]  Dorje C Brody,et al.  Faster than Hermitian quantum mechanics. , 2007, Physical review letters.

[25]  A. Saxena,et al.  Robust and fragile PT -symmetric phases in a tight-binding chain , 2010, 1008.2968.

[26]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[27]  Zeilinger,et al.  Atom Waves in Crystals of Light. , 1996, Physical review letters.

[28]  T. Stehmann,et al.  Observation of exceptional points in electronic circuits , 2003 .

[29]  T. Prosen,et al.  PT-symmetric wave Chaos. , 2010, Physical review letters.