Zn pyro-pheophorbide a--fulleronicotine dyad; supramolecular self assembled donor-acceptor system for photoinduced charge separation.

Zn pyro-pheophorbide a and fulleronicotine form in nonpolar solvents a supramolecular self-assembled electron donor-acceptor dyad, which performs fast photoinduced charge separation (0.5 ps) and slow recombination (>1 ns) as evidenced by photochemical studies.

[1]  R. Chitta,et al.  Self-assembled tetrapyrrole–fullerene and tetrapyrrole–carbon nanotube donor–acceptor hybrids for light induced electron transfer applications , 2008 .

[2]  M. Prato,et al.  Easy Access to Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C(60). , 1996, The Journal of organic chemistry.

[3]  M. Prato,et al.  Excited-state properties of C(60) fullerene derivatives. , 2000, Accounts of chemical research.

[4]  Atula S. D. Sandanayaka,et al.  Effect of axial ligation or pi-pi-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates. , 2005, Chemistry.

[5]  Dirk M Guldi,et al.  Multifunctional molecular carbon materials--from fullerenes to carbon nanotubes. , 2006, Chemical Society reviews.

[6]  Paul A. Karr,et al.  Photosynthetic reaction center mimicry of a "special pair" dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene(s). , 2007, Chemistry.

[7]  R. Chitta,et al.  Design, syntheses, and studies of supramolecular porphyrin-fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes. , 2006, The journal of physical chemistry. B.

[8]  M. Zandler,et al.  Photoinduced Electron Transfer in “Two-Point” Bound Supramolecular Triads Composed of N,N-Dimethylaminophenyl-Fullerene-Pyridine Coordinated to Zinc Porphyrin , 2003 .

[9]  A. Holzwarth,et al.  Structural Role of (Bacterio)chlorophyll Ligated in the Energetically Unfavorable β-Position* , 2006, Journal of Biological Chemistry.

[10]  S. Fukuzumi,et al.  Porphyrin‐ and Fullerene‐Based Molecular Photovoltaic Devices , 2004 .

[11]  F. D’Souza,et al.  Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines , 2005 .

[12]  Francis D'Souza,et al.  Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems , 2004 .

[13]  S. Heikkinen,et al.  Zn Pyropheophorbide a : A β-Face Selective Nicotine Receptor , 2008 .

[14]  Atula S. D. Sandanayaka,et al.  Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation. , 2005, Chemical communications.

[15]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .

[16]  Shunichi Fukuzumi,et al.  Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors , 2008 .