Unified Sediment Transport Formulation for Coastal Inlet Application

The Coastal Inlets Research Program (CIRP) is developing predictive numerical models for simulating the waves, currents, sediment transport, and morphology change at and around coastal inlets. Water motion at a coastal inlet is a combination of quasi-steady currents such as river flow, tidal current, wind-generated current, and seiching, and of oscillatory flows generated by surface waves. Waves can also create quasi-steady currents, and the waves can be breaking or non-breaking, greatly changing potential for sediment transport. These flows act in arbitrary combinations with different magnitudes and directions to mobilize and transport sediment. Reliable prediction of morphology change requires accurate predictive formulas for sediment transport rates that smoothly match in the various regimes of water motion. This report describes results of a research effort conducted to develop unified sediment transport rate predictive formulas for application in the coastal inlet environment. The formulas were calibrated with a wide range of available measurements compiled from the laboratory and field and then implemented in the CIRP's Coastal Modeling System. Emphasis of the study was on reliable predictions over a wide range of input conditions. All relevant physical processes were incorporated to obtain greatest generality, including: (1) bed load and suspended load, (2) waves and currents, (3) breaking and non-breaking waves, (4) bottom slope, (5) initiation of motion, (6) asymmetric wave velocity, and (7) arbitrary angle between waves and current. A large database on sediment transport measurements made in the laboratory and the field was compiled to test different aspects of the formulation over the widest possible range of conditions. Other phenomena or mechanisms may also be of importance, such as the phase lag between water and sediment motion or the influence of bed forms. Modifications to the general formulation are derived to take these phenomena into account. The (Less)

[1]  John R. Glover,et al.  Wave Entrainment of Sediment from Rippled Beds , 1977 .

[2]  J. Ribberink,et al.  Wave-induced sediment transport processes in the ripple regime , 2005 .

[3]  A. Al-Salem Sediment transport in oscillatory boundary layers under sheet-flow conditions , 1993 .

[4]  G. Kalkanis Transportation of bed material due to wave action / by George Kalkanis. , 1964 .

[5]  Ernest R. Smith,et al.  Longshore sand transport - initial results from large-scale sediment transport facility , 2002 .

[6]  S. Wright,et al.  SAND TRANSPORT ON STEEPLY SLOPING PLANE AND RIPPLED BEDS , 2003 .

[7]  S. R. McLean,et al.  Spatially averaged flow over a wavy surface , 1977 .

[8]  William R. Brownlie,et al.  Compilation of alluvial channel data : Laboratory and field , 1981 .

[9]  R. Bagnold An approach to the sediment transport problem from general physics , 1966 .

[10]  Michael Collins,et al.  Sediment resuspension on beaches: response to breaking waves , 2000 .

[11]  Akira Watanabe,et al.  SHEET FLOW UNDER NONLINEAR WAVES AND CURRENTS , 1993 .

[12]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[13]  佐藤 慎司,et al.  Oscillatory boundary layer flow and sand movement over ripples , 1987 .

[14]  Ole Secher Madsen,et al.  Mechanics of Cohesionless Sediment Transport in Coastal Waters , 1991 .

[15]  R. Dean,et al.  Suspended Sediment Transport and Beach Profile Evolution , 1984 .

[16]  A. Watanabe Numerical Models of Nearshore Currents and Beach Deformation , 1982 .

[17]  R. Müller,et al.  Formulas for Bed-Load transport , 1948 .

[18]  Hunter Rouse,et al.  Experiments on the Mechanics of Sediment Suspension , 1939 .

[19]  D. Inman,et al.  An energetics bedload model for a plane sloping beach: Local transport , 1981 .

[20]  J. K. Culbertson,et al.  Summary of alluvial-channel data from Rio Grande conveyance channel, New Mexico, 1965-69 , 1972 .

[21]  Tomoya Shibayama,et al.  Simple Model for Undertow Profile , 2000 .

[22]  N. Kraus,et al.  Cross-shore distribution of longshore sediment transport: comparison between predictive formulas and field measurements , 2001 .

[23]  Kenneth C. Wilson,et al.  Motion of Contact‐Load Particles at High Shear Stress , 1992 .

[24]  J. Ribberink Bed-load transport for steady flows and unsteady oscillatory flows , 1998 .

[25]  A. Temperville,et al.  DYNAMIC ANALYSIS OF FLOATING BREAKWATER MOORING SYSTEMS , 1991 .

[26]  James A. Bailard,et al.  An energetics total load sediment transport model for a plane sloping beach , 1981 .

[27]  Hans Hanson,et al.  CLOSED FORM SOLUTION FOR THRESHOLD VELOCITY FOR INITIATION OF SEDIMENT MOTION UNDER WAVES , 2007 .

[28]  R. Whitehouse Observations of the boundary layer characteristics and the suspension of sand at a tidal site , 1995 .

[29]  R. Sternberg,et al.  Effect of wave breaking on sediment eddy diffusivity, suspended-sediment and longshore sediment flux profiles in the surf zone , 2002 .

[30]  R. V. Ahilan,et al.  Sediment Transport in Oscillatory Flow Over Flat Beds , 1987 .

[31]  Akira Watanabe,et al.  SAND TRANSPORT RATE UNDER WAVE-CURRENT ACTION , 1991 .

[32]  Shinji Sato,et al.  A Sheetflow Transport Model for Asymmetric Oscillatory Flows Part I: Uniform Grain Size Sediments , 2003 .

[33]  Kinjiro Kajiura,et al.  5. A Model of the Bottom Boundary Layer in Water Waves , 1968 .

[34]  F. Engelund,et al.  A monograph on sediment transport in alluvial streams , 1967 .

[35]  Mohammad Dibajnia Sheet Flow Transport Formula Extended and Applied to Horizontal Plane Problems , 1995 .

[36]  N. Kraus,et al.  Mathematical Model for Rapid Estimation of Infilling and Sand Bypassing at Inlet Entrance Channels , 2001 .

[37]  H. Einstein,et al.  The Bed-Load Function for Sediment Transportation in Open Channel Flows , 1950 .

[38]  I. A. Svendsen,et al.  Cross-shore currents in surf-zone modelling , 1988 .

[39]  H. C. Miller Comparison of Storm Longshore Transport Rates to Predictions , 2010 .

[40]  B. Mutlu Sumer,et al.  Particle motions near the bottom in turbulent flow in an open channel. Part 2 , 1978 .

[41]  Claude Migniot,et al.  Action des courants, de la houle et du vent sur les sédiments , 1977 .

[42]  A. Watanabe,et al.  A Representative Wave Model for Estimation of Nearshore Local Transport Rate , 2001 .

[43]  B. Grasmeijer Process-based cross-shore modelling of barred beaches , 2002 .

[44]  C. D. Toit,et al.  Velocity measurements close to rippled beds in oscillatory flow , 1981, Journal of Fluid Mechanics.

[45]  J. Ribberink,et al.  Phase lags in oscillatory sheet flow: experiments and bed load modelling , 2002 .

[46]  J. F. A. Sleath,et al.  Mobile layer in oscillatory sheet flow , 1998 .

[47]  T. Asano SEDIMENT TRANSPORT UNDER SHEET-FLOW CONDITIONS , 1995 .

[48]  G. F. Round,et al.  Behaviour of beds of dense particles in a horizontally oscillating liquid , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  J. H. Berg,et al.  Sediment Transport of Fine Sands at High Velocities , 1991 .

[50]  P. N. Rowe,et al.  A Convenient Empirical Equation for Estimation of the Richardson-Zaki Exponent , 1987 .

[51]  Jørgen Fredsøe,et al.  Turbulent Boundary Layer in Wave‐current Motion , 1984 .

[52]  Neil L. Coleman,et al.  Flume Studies of the Sediment Transfer Coefficient , 1970 .

[53]  Effective Form Roughness of Ripples for Waves , 2004 .

[54]  H. Dette,et al.  VELOCITY AND SEDIMENT CONCENTRATION FIELDS ACROSS SURF ZONES , 1986 .

[55]  Madhav Manohar,et al.  Mechanics of bottom sediment movement due to wave action , 1955 .

[56]  Vito A. Vanoni,et al.  Transportation of Suspended Sediment by Water , 1946 .

[57]  F. J. Havinga,et al.  Sediment concentrations and sediment transport in case of irregular non-breaking waves with a current , 1992 .

[58]  I. A. Svendsen Mass flux and undertow in a surf zone , 1984 .

[59]  D. King Studies in Oscillatory Flow Bedload Sediment Transport , 1991 .

[60]  R. Kosyan Vertical distribution of suspended sediment concentrations seawards of the breaking zone , 1985 .

[61]  M. Hom-ma,et al.  A Study on Suspended Sediment Due to Wave Action , 1965 .

[62]  R. Sternberg,et al.  Kinematics of breaking waves and associated suspended sediment in the nearshore zone , 1993 .

[63]  Tomoya Shibayama,et al.  SEDIMENT TRANSPORT AND BEACH TRANSFORMATION. , 1982 .

[64]  M. Larson MODEL FOR DECAY OF RANDOM WAVES IN SURF ZONE , 1995 .

[65]  T. G. Drake,et al.  Discrete particle model for sheet flow sediment transport in the nearshore , 2001 .

[66]  A. G. Anderson Distribution of suspended sediment in a natural stream , 1942 .

[67]  G. Smart Turbulent Velocity Profiles and Boundary Shear in Gravel Bed Rivers , 1999 .

[68]  Ivar G. Jonsson,et al.  WAVE BOUNDARY LAYERS AMD FRICTION FACTORS , 1966 .

[69]  Mohammad Dibajnia Study on nonlinear effects in beach processes , 1991 .

[70]  Richard Soulsby,et al.  Prediction of Ripple Properties in Shelf Seas. Mark 2 Predictor for Time Evolution (CD-ROM) , 2005 .

[71]  Ole Secher Madsen,et al.  Turbulent wave boundary layers: 1. Model formulation and first‐order solution , 1984 .

[72]  R. Soulsby,et al.  Threshold of Sediment Motion in Coastal Environments , 1997 .

[73]  Jørgen Fredsøe,et al.  Data analysis of bed concentration of suspended sediment , 1994 .

[74]  Dirk Hermanus Swart,et al.  Offshore sediment transport and equilibrium beach profiles , 1974 .

[75]  R. Deigaard,et al.  Mechanics Of Coastal Sediment Transport , 1992 .

[76]  Joe C. Willis,et al.  LABORATORY STUDY OF TRANSPORT OF FINE SAND , 1972 .

[77]  D. Coles The law of the wake in the turbulent boundary layer , 1956, Journal of Fluid Mechanics.

[78]  Catarine M. Dohmen-Janssen,et al.  Grain size influence on sediment transport in oscillatory sheet flow; phase lags and mobile-bed effects , 1999 .

[79]  Julio A. Zyserman,et al.  Comparisons between sediment transport models and observations made in wave and current flows above plane beds , 1997 .

[80]  A. Kroon Suspended Sediment Concentrations in a Barred Nearshore Zone , 1991 .

[81]  D. Hanes,et al.  Sheet flow dynamics under monochromatic nonbreaking waves , 2002 .

[82]  Emmett M. Laursen,et al.  The Total Sediment Load of Streams , 1958 .

[83]  M. Isaacson,et al.  Loose boundary hydraulics , 1991 .

[84]  O. H. Andersen,et al.  Distribution of suspended sediment in large waves , 1985 .

[85]  L. C. Rijn,et al.  Wave-Related Suspended Sand Transport in the Ripple Regime , 2001 .

[86]  Kenneth C. Wilson,et al.  Bed-Load Transport at High Shear Stress , 1966 .

[87]  E. W. Bijker LITTORAL DRIFT AS FUNCTION OF WAVES AND CURRENT , 1968 .

[88]  O. Madsen,et al.  Combined wave and current interaction with a rough bottom , 1979 .

[89]  Van Rijn,et al.  Sediment transport; Part I, Bed load transport , 1984 .

[90]  Vladimir Nikora,et al.  Turbulence Characteristics of New Zealand Gravel-Bed Rivers , 1997 .

[91]  Martin C. Miller,et al.  The initiation of oscillatory ripple marks and the development of plane-bed at high shear stresses under waves , 1975 .

[92]  Jan S. Ribberink,et al.  Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow , 1994 .

[93]  Graeme M. Smart,et al.  Sediment Transport Formula for Steep Channels , 1984 .

[94]  E. W. Bijker,et al.  Some considerations about scales for coastal models with movable bed , 1967 .

[95]  J. S. Antunes do Carmo,et al.  Bottom friction and time-dependent shear stress for wave-current interaction , 2003 .

[96]  Sergiei M. Antsyferov,et al.  Measurements of coastal suspended sediment concentrations , 1983 .

[97]  R. Soulsby Dynamics of marine sands : a manual for practical applications , 1997 .

[98]  B. Krishnappan,et al.  Suspended Sediment Distribution in Wave Field , 1984 .

[99]  P. Thorne,et al.  Measurements of suspended sediment transport parameters in a tidal estuary , 2001 .