Enstatite chemical composition and microstructures in the La Villa H4 chondrite

Abstract— La Villa is an unshocked H4 chondrite. Chemical compositions require crystallization at temperatures >1250 °C for enstatite and >1211 °C for augite. Widespread (100) polysynthetic twins and (001) contraction cracks in enstatite indicate crystallization as protoenstatite, inverted to either ortho‐ or clinoenstatite or both on cooling. High‐resolution transmission electron microscopy shows a range of ortho‐clinoenstatite intergrowths: heavily faulted clinoenstatite in radial and poikilitic chondrules, almost regular orthoenstatite in a microgranular chondrule and in the matrix. In the former, the clinoenstatite lamellae are both even or odd multiples of the 9Å periodicity, a few unit cells thick, twinned and interleaved with minor orthoenstatite. In the latter, orthoenstatite lamellae are regularly stacked for more than 2000 Å. Localized annealing effects, reversing clinoenstatite to orthoenstatite, are revealed by “U‐shaped” and “Z‐shaped” terminations. The variable microstructures suggest different cooling rates for the different chondrule types, soon after the liquidus‐to‐solidus transition (1200 to 1300 °C) but prior to accretion. In particular, clinoenstatite‐rich crystals from radial and poikilitic chondrules give cooling rates on the order of 100 and 10 °C/h. Comparisons with previous works on dynamic crystallization experiments and orthopyroxene Fe‐Mg cation ordering indicate a nonlinear cooling path from the high chondrule formation temperatures to a postaccretionary low‐temperature (340–480 °C) evolution.

[1]  M. Okrusch,et al.  Mineralogy, petrography, and thermometry of the H5 chondrite Carcote, Chile , 1999 .

[2]  C. Pillinger,et al.  Equilibrated ordinary chondrites: Constraints for thermal history from iron‐magnesium ordering in orthopyroxene , 1997 .

[3]  U. Truyen,et al.  [Electron microscopy]. , 1997, Tierarztliche Praxis.

[4]  C. Pillinger,et al.  Unshocked equilibrated H‐chondrites: A common low‐temperature record from orthopyroxene iron‐magnesium ordering , 1996 .

[5]  H. McSween,et al.  Pyroxene equilibration temperatures in metamorphosed ordinary chondrites , 1993 .

[6]  G. J. Taylor,et al.  Thermal history of chondrites: Hot accretion vs. metamorphic reheating , 1992 .

[7]  D. Ohnenstetter,et al.  Overgrowth Textures, Disequilibrium Zoning, and Cooling History of a Glassy Four-Pyroxene Boninite Dyke from New Caledonia , 1992 .

[8]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[9]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[10]  R. Hewins,et al.  Temperature conditions for chondrule formation , 1990 .

[11]  A. Ruzicka Deformation and thermal histories of chondrules in the Chainpur (LL3.4) chondrite , 1990 .

[12]  H. McSween,et al.  Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism , 1989 .

[13]  N. Takaaki Texture and chemical composition of pyroxenes in chondrules in carbonaceous and unequilibrated ordinary chondrites , 1989 .

[14]  A. Crawford,et al.  Classification, petrogenesis and tectonic setting of boninites. , 1989 .

[15]  A. Brearley,et al.  KINETICS OF THE CLINOPYROXENE-ORTHOPYROXENE TRANSITION - CONSTRAINTS ON THE THERMAL HISTORIES OF CHONDRULES AND TYPE-3-6 CHONDRITES , 1988 .

[16]  W. Carlson Subsolidus phase equilibria on the forsterite-saturated join Mg 2 Si 2 O 6 -CaMgSi 2 O 6 at atmospheric pressure , 1988 .

[17]  D. Sears,et al.  Overview and classification of meteorites. , 1988 .

[18]  W. Müller,et al.  The submicroscopic structure of the unequilibrated ordinary chondrites Chainpur, Mezö-Madaras and Tieschitz: a transmission electron-microscopic study , 1985 .

[19]  N. Morimoto,et al.  A transmission electron microscope study of pyroxene chondrules in equilibrated L-group chondrites , 1985 .

[20]  E. Olsen,et al.  Equilibration temperatures of the ordinary chondrites: A new evaluation , 1984 .

[21]  J. R. Ashworth,et al.  Chondrite thermal histories constrained by experimental annealing of Quenggouk orthopyroxene , 1984, Nature.

[22]  N. Morimoto,et al.  Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3)—an electron microscopic study , 1983 .

[23]  N. Morimoto,et al.  Electron microscopy of clinoenstatite from a boninite and a chondrite , 1983 .

[24]  M. Duke Meteorites: A Petrologic-Chemical Synthesis , 1982 .

[25]  R. Kretz Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data , 1982 .

[26]  W. Hutchison,et al.  Mineral chemistry and genetic relations among H-group chondrites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  J. R. Ashworth Fine structure in H-group chondrites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  R. T. Dodd Meteorites. A petrologic-chemical synthesis. , 1981 .

[29]  P. Buseck,et al.  CHAPTER 4. SUBSOLIDUS PHENOMENA IN PYROXENES , 1980 .

[30]  J. S. Huebner CHAPTER 5. PYROXENE PHASE EQUILIBRIA AT LOW PRESSURE , 1980 .

[31]  J. R. Ashworth,et al.  Thermal history of the H-group of chondritic meteorites , 1980, Nature.

[32]  P. Buseck,et al.  Subsolidus phenomena in pyroxenes , 1980 .

[33]  J. S. Huebner,et al.  Pyroxene phase equilibria at low pressure , 1980 .

[34]  J. R. Ashworth Chondrite thermal histories: Clues from electron microscopy of orthopyroxene , 1980 .

[35]  H. Takeda,et al.  Pyroxene geothermometry applied to a three-pyroxene achondrite from Allan Hills, Antarctica and ordinary chondrites , 1979 .

[36]  R. Oberhänsli,et al.  Geochemistry of basaltic and gabbroic rocks from the West Mariana basin and the Mariana trench , 1978 .

[37]  D. J. Barber,et al.  Electron microscopy of some stony meteorites , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  S. Saxena Two-pyroxene geothermometer; a model with an approximate solution , 1976 .

[39]  G. Lorimer,et al.  The quantitative analysis of thin specimens , 1975 .

[40]  Prrnn R. Busncx High Resolution Electron Microscopy of Enstatite. II: Geological Application , 1975 .

[41]  R. Binns Pyroxenes from non-carbonaceous chondritic meteorites , 1970, Mineralogical Magazine.

[42]  A. Albee,et al.  Empirical Correction Factors for the Electron Microanalysis of Silicates and Oxides , 1968, The Journal of Geology.

[43]  R. Kretz Distribution of Magnesium and Iron between Orthopyroxene and Calcic Pyroxene in Natural Mineral Assemblages , 1963, The Journal of Geology.

[44]  B. Mason Olivine composition in chondrites , 1963 .