Frequency-domain identification: An algorithm based on an adaptive rational orthogonal system
暂无分享,去创建一个
[1] P. V. D. Hof,et al. Frequency domain identification with generalized orthonormal basis functions , 1995, IEEE Trans. Autom. Control..
[2] R. Langer. Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .
[3] Bo Wahlberg. Identification of resonant systems using Kautz filters , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[4] Tao Qian,et al. Adaptive Fourier series—a variation of greedy algorithm , 2011, Adv. Comput. Math..
[5] B. Ninness,et al. Rational basis functions for robust identification from frequency and time domain measurements , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
[6] Péter Vértesi,et al. On the convergence of Fourier series , 1980 .
[7] Henrik Sandberg,et al. Chairman’s Summary , 1997 .
[8] Tomás Oliveira e Silva,et al. A N-Width Result for the Generalized Orthonormal Basis Function Model , 1996 .
[9] Congratulations to Professor K. Itô , 2007 .
[10] Marvin D. Troutt,et al. Linear programming system identification: The general nonnegative parameters case , 2008, Eur. J. Oper. Res..
[11] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[12] Brett Ninness,et al. Frequency Domain Estimation Using Orthonormal Bases , 1996 .
[13] L. Wang,et al. Frequency smoothing using Laguerre model , 1992 .
[14] Hüseyin Akçay. On the uniform approximation of discrete-time systems by generalized Fourier series , 2001, IEEE Trans. Signal Process..
[15] Håkan Hjalmarsson,et al. The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..
[16] GU GUOXIANG,et al. A Class of Algorithms for Identification in , .
[17] Søren Vang Andersen,et al. Efficient Blind System Identification of Non-Gaussian Autoregressive Models With HMM Modeling of the Excitation , 2007, IEEE Transactions on Signal Processing.
[18] Guoxiang Gu,et al. A class of algorithms for identification in H∞ , 1992, Autom..
[19] Richard W. Longman,et al. Iterative learning control as a method of experiment design for improved system identification , 2006, Optim. Methods Softw..
[20] Brett Ninness,et al. Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence , 1999, Math. Control. Signals Syst..
[21] Stephen A. Billings,et al. An adaptive orthogonal search algorithm for model subset selection and non-linear system identification , 2008, Int. J. Control.
[22] Pertti M. Mäkilä,et al. Approximation of stable systems by laguerre filters , 1990, Autom..
[23] B. Wahlberg,et al. Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .
[24] Otto Szász. On closed sets of rational functions , 1953 .
[25] Adhemar Bultheel,et al. Orthogonal rational functions for system identification: numerical aspects , 2003, IEEE Trans. Autom. Control..
[26] Marvin D. Troutt,et al. Linear programming system identification , 2005, Eur. J. Oper. Res..
[27] B. Wahlberg. System identification using Laguerre models , 1991 .
[28] Tao Qian. Intrinsic mono‐component decomposition of functions: An advance of Fourier theory , 2010 .
[29] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[30] L. Tan,et al. The point‐wise convergence of general rational Fourier series , 2012 .
[31] Satoru Takenaka. On the Orthogonal Functions and a New Formula of Interpolation , 1925 .
[32] A. Bultheel,et al. Boundary Asymptotics for Orthogonal Rational Functions on the Unit Circle , 2000 .
[33] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[34] Pertti M. Mäkilä,et al. Laguerre series approximation of infinite dimensional systems , 1990, Autom..
[35] J. Schoukens,et al. Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..
[36] Venkataramanan Balakrishnan,et al. System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..
[37] Bo Wahlberg,et al. On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..
[38] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[39] P. N. Paraskevopoulos,et al. Parametric identification of discrete-time SISO systems , 1979 .
[40] Brett Ninness,et al. Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..
[41] Jonathan R. Partington,et al. Interpolation, identification, and sampling , 1997 .
[42] P. M. Mäkilät. Laguerre methods and H ∞ identification of continuous-time systems , 1991 .
[43] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[44] Brett Ninness,et al. Rational Basis Functions for Robust Identification from Frequency and Time-Domain Measurements , 1998, Autom..
[45] Adhemar Bultheel,et al. Fourier analysis and the Takenaka-Malmquist basis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[46] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .