Frequency-domain identification: An algorithm based on an adaptive rational orthogonal system

This paper presents a new adaptive algorithm for frequency-domain identification. The algorithm is related to the rational orthogonal system (Takenaka-Malmquist system). This work is based on an adaptive decomposition algorithm previously proposed for decomposing the Hardy space functions, in which a greedy sequence is obtained according to the maximal selection criterion. We modify the algorithm through necessary changes for system identification.

[1]  P. V. D. Hof,et al.  Frequency domain identification with generalized orthonormal basis functions , 1995, IEEE Trans. Autom. Control..

[2]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[3]  Bo Wahlberg Identification of resonant systems using Kautz filters , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[4]  Tao Qian,et al.  Adaptive Fourier series—a variation of greedy algorithm , 2011, Adv. Comput. Math..

[5]  B. Ninness,et al.  Rational basis functions for robust identification from frequency and time domain measurements , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[6]  Péter Vértesi,et al.  On the convergence of Fourier series , 1980 .

[7]  Henrik Sandberg,et al.  Chairman’s Summary , 1997 .

[8]  Tomás Oliveira e Silva,et al.  A N-Width Result for the Generalized Orthonormal Basis Function Model , 1996 .

[9]  Congratulations to Professor K. Itô , 2007 .

[10]  Marvin D. Troutt,et al.  Linear programming system identification: The general nonnegative parameters case , 2008, Eur. J. Oper. Res..

[11]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  Brett Ninness,et al.  Frequency Domain Estimation Using Orthonormal Bases , 1996 .

[13]  L. Wang,et al.  Frequency smoothing using Laguerre model , 1992 .

[14]  Hüseyin Akçay On the uniform approximation of discrete-time systems by generalized Fourier series , 2001, IEEE Trans. Signal Process..

[15]  Håkan Hjalmarsson,et al.  The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..

[16]  GU GUOXIANG,et al.  A Class of Algorithms for Identification in , .

[17]  Søren Vang Andersen,et al.  Efficient Blind System Identification of Non-Gaussian Autoregressive Models With HMM Modeling of the Excitation , 2007, IEEE Transactions on Signal Processing.

[18]  Guoxiang Gu,et al.  A class of algorithms for identification in H∞ , 1992, Autom..

[19]  Richard W. Longman,et al.  Iterative learning control as a method of experiment design for improved system identification , 2006, Optim. Methods Softw..

[20]  Brett Ninness,et al.  Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence , 1999, Math. Control. Signals Syst..

[21]  Stephen A. Billings,et al.  An adaptive orthogonal search algorithm for model subset selection and non-linear system identification , 2008, Int. J. Control.

[22]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[23]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[24]  Otto Szász On closed sets of rational functions , 1953 .

[25]  Adhemar Bultheel,et al.  Orthogonal rational functions for system identification: numerical aspects , 2003, IEEE Trans. Autom. Control..

[26]  Marvin D. Troutt,et al.  Linear programming system identification , 2005, Eur. J. Oper. Res..

[27]  B. Wahlberg System identification using Laguerre models , 1991 .

[28]  Tao Qian Intrinsic mono‐component decomposition of functions: An advance of Fourier theory , 2010 .

[29]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[30]  L. Tan,et al.  The point‐wise convergence of general rational Fourier series , 2012 .

[31]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[32]  A. Bultheel,et al.  Boundary Asymptotics for Orthogonal Rational Functions on the Unit Circle , 2000 .

[33]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[34]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[35]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[36]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[37]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[38]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[39]  P. N. Paraskevopoulos,et al.  Parametric identification of discrete-time SISO systems , 1979 .

[40]  Brett Ninness,et al.  Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..

[41]  Jonathan R. Partington,et al.  Interpolation, identification, and sampling , 1997 .

[42]  P. M. Mäkilät Laguerre methods and H ∞ identification of continuous-time systems , 1991 .

[43]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[44]  Brett Ninness,et al.  Rational Basis Functions for Robust Identification from Frequency and Time-Domain Measurements , 1998, Autom..

[45]  Adhemar Bultheel,et al.  Fourier analysis and the Takenaka-Malmquist basis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[46]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .