Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background Subtraction

This paper proposes an efficient real-time background subtraction algorithm, which is essential in many computer vision applications. Initially, histograms of the intensity values for each channel of a pixel position in a set of training framesare constructed. A background model, histogram min-max bucket, is constructed from the minimum and maximum values of contiguous non-zero frequencies of the temporal intensity histogram. A novel feature of this algorithm is the use of a single sliding window to update the system adaptively, capturing the proper background even under sudden and/or gradual illumination changes in the scene. We incorporate both local and global information with the help of the current and the previously visited pixel values for binary classification of a pixel into foreground and background. This algorithm is compared with several state-of-the-art techniques and experimental studies show that the proposed method outperforms all these methods in terms of accurate binary classification.

[1]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[2]  Guoying Zhao,et al.  Background Subtraction Based on Low-Rank and Structured Sparse Decomposition , 2015, IEEE Transactions on Image Processing.

[3]  Antoine Vacavant,et al.  A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos , 2014, Comput. Vis. Image Underst..

[4]  Larry S. Davis,et al.  Background modeling and subtraction by codebook construction , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[5]  Brendon J. Woodford,et al.  Enhanced Codebook Model for Real-Time Background Subtraction , 2011, ICONIP.

[6]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[7]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[8]  Xuelong Li,et al.  Robust Video Object Cosegmentation , 2015, IEEE Transactions on Image Processing.

[9]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. Manzanera Σ-Δ Background Subtraction and the Zipf Law , 2007 .

[11]  Bingbing Ni,et al.  Video Object Segmentation Via Dense Trajectories , 2015, IEEE Transactions on Multimedia.

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  T. Xiang Background Subtraction with Dirichlet Process Mixture Models , 2013 .

[15]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[16]  Fatih Murat Porikli,et al.  Saliency-aware geodesic video object segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[19]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[20]  Tao Xiang,et al.  Background Subtraction with DirichletProcess Mixture Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[23]  Marc Van Droogenbroeck,et al.  Deep background subtraction with scene-specific convolutional neural networks , 2016, 2016 International Conference on Systems, Signals and Image Processing (IWSSIP).

[24]  Xiaoqin Zhang,et al.  Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking , 2011, International Journal of Computer Vision.

[25]  Hyeran Byun,et al.  Human Silhouette Extraction Method Using Region Based Background Subtraction , 2007, MIRAGE.

[26]  Antoine Manzanera,et al.  A Robust and Computationally Efficient Motion Detection Algorithm Based on Sigma-Delta Background Estimation , 2004, ICVGIP.

[27]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[28]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[29]  Moongu Jeon,et al.  A New Framework for Background Subtraction Using Multiple Cues , 2012, ACCV.

[30]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[31]  Eduardo Monari,et al.  Fusion of background estimation approaches for motion detection in non-static backgrounds , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[32]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[33]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  Li-Chen Fu,et al.  A Region-Level Motion-Based Background Modeling and Subtraction Using MRFs , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[35]  Guillaume-Alexandre Bilodeau,et al.  Improving background subtraction using Local Binary Similarity Patterns , 2014, IEEE Winter Conference on Applications of Computer Vision.

[36]  David M. W. Powers,et al.  Applications and Explanations of Zipf’s Law , 1998, CoNLL.

[37]  Hongyu Zhao,et al.  Low-Rank Modeling and Its Applications in Image Analysis , 2014, ACM Comput. Surv..

[38]  Guillaume-Alexandre Bilodeau,et al.  An Efficient Region-Based Background Subtraction Technique , 2008, 2008 Canadian Conference on Computer and Robot Vision.

[39]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.