A Semantic Network Approach to the Creativity Quotient (CQ)

The Creativity Quotient (CQ) is a novel metric building on ideational fluency that accounts for both the number of novel ideas (ideation) and the number of distinct categories (fluency) these ideas fall into. Categories are, however, difficult to define unambiguously and objectively. We propose that the principal contribution of this article is an entirely algorithmic approach based on concept networks, and an information metric defined thereon. It requires only measures of the similarity between concepts, which may come from databases such as Wordnet, Wikipedia, Google, or corpus analysis tools. In the special case of strong, unique categories it reduces directly to CQ.

[1]  Larry Wall,et al.  Programming Perl , 1991 .

[2]  Kristan J. Wheaton The Nature of Intelligence , 2001 .

[3]  Ken Arnold,et al.  The Java Programming Language , 1996 .

[4]  Paul M. B. Vitányi,et al.  Automatic Meaning Discovery Using Google , 2006, Kolmogorov Complexity and Applications.

[5]  J. Bryan,et al.  Measures of fluency as predictors of incidental memory among older adults. , 2000, Psychology and aging.

[6]  杨文秀,et al.  此处“personality”译法探析 , 2000 .

[7]  S. Solomon,et al.  ESSAYS ON SCIENCE AND SOCIETY:Creative Sparks , 1999 .

[8]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[9]  Mark A. Runco,et al.  Scoring Divergent Thinking Tests Using Total Ideational Output and a Creativity Index , 1992 .

[10]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[11]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[12]  Terry Bossomaier,et al.  The creativity quotient: An objective scoring of ideational fluency , 2004 .

[13]  D. Hocevar A comparison of statistical infrequency and subjective judgment as criteria in the measurement of originality. , 1979, Journal of personality assessment.

[14]  A. Snyder,et al.  Nonconscious Idea Generation , 2004, Psychological reports.

[15]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[16]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[17]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[18]  金權鎬 Semantics, An Introduction to The Science of Meaning , 1965 .

[19]  Allan W. Snyder,et al.  Information capacity of eyes , 1977, Vision Research.

[20]  Ethan M. Meyers,et al.  Contextually Evoked Object-Specific Responses in Human Visual Cortex , 2004, Science.

[21]  Carson C. Chow,et al.  Small Worlds , 2000 .

[22]  John Kelly,et al.  Artificial intelligence - a modern myth , 1993, Ellis Horwood series in artificial intelligence.

[23]  Rate and uniqueness in children's creative responding. , 1968, Child development.

[24]  Stephen Ullmann,et al.  Semantics: An Introduction to the Science of Meaning , 1962 .

[25]  Ken Arnold,et al.  The Java programming language (2nd ed.) , 1998 .

[26]  J. R Crawford,et al.  Performance on tests of frontal lobe function reflect general intellectual ability , 2002, Neuropsychologia.

[27]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[28]  J. W. Getzels,et al.  Creativity and Intelligence , 1962 .

[29]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[30]  Tony Veale,et al.  An Intrinsic Information Content Metric for Semantic Similarity in WordNet , 2004, ECAI.

[31]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[32]  J. Collier Intrinsic Information , 1990 .

[33]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[34]  J. W. Getzels,et al.  Creativity and Intelligence , 1962 .