Metal Hydrogen Sulfates M(HSO4)n: As Efficient Catalysts for the Synthesis of Quinoxalines in EtOH at Room Temperature

A convenient method for the synthesis of quinoxalines catalysed by metal hydrogen sulfates by the reaction of 1,2-diamino compounds and 1,2-dicarbonyl compounds in ethanol as solvent at room temperature is reported.

[1]  M. Zolfigol,et al.  Silica Sulfuric Acid and Al(HSO4)3: As Efficient Catalysts for the Formylation of Alcohols by Using Ethyl Formate under Heterogeneous Conditions , 2008 .

[2]  A. Zare,et al.  Oxalic acid as an efficient, cheap, and reusable catalyst for the preparation of quinoxalines via condensation of 1,2-diamines with α-diketones at room temperature , 2008 .

[3]  M. Zolfigol,et al.  PEG-N2O4 System as an Efficient Reagent both for the Rapid Oxidation of Urazoles and 1,4-Dihydropyridines under Nonaqueous Conditions , 2008 .

[4]  Rui Wang,et al.  Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water , 2008 .

[5]  Ajeet Kumar,et al.  Ni-nanoparticles: An efficient catalyst for the synthesis of quinoxalines , 2008 .

[6]  Yufang Xu,et al.  Novel nitroheterocyclic hypoxic markers for solid tumor: synthesis and biological evaluation. , 2008, Bioorganic & medicinal chemistry.

[7]  Gong Kai,et al.  A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid , 2008 .

[8]  M. Zolfigol,et al.  Applications of Some Metal Hydrogen Sulfates in Organic Transformations , 2008 .

[9]  M. Zolfigol,et al.  Tribromoisocyanuric Acid (TBCA) and Oxone®-MX Systems as Oxidizing Agents: Oxidative Coupling of Thiols to Their Corresponding Disulfides under Mild and Heterogeneous Conditions , 2007 .

[10]  M. Zolfigol,et al.  Silica sulfuric acid promoted aromatization of 1,2-dihydroquinolines by using NaNO2 as oxidizing agent under mild and heterogeneous conditions , 2007 .

[11]  M. Heravi,et al.  Zn[(l)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature , 2007 .

[12]  M. Zolfigol,et al.  Metal Hydrogen Sulfates Catalyzed Methoxymethylation of Alcohols under Solvent-Free Conditions , 2007 .

[13]  M. Zolfigol,et al.  Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-one Using Metal Hydrogen Sulfates M(HSO4)n as Catalyst under Solvent-Free Conditions , 2007 .

[14]  M. Zolfigol,et al.  Ca(HSO4)2 mediated conversion of alcohols into N-substituted amides under heterogeneous conditions: A modified Ritter reaction , 2007 .

[15]  M. Zolfigol,et al.  Iodine-catalyzed friedlander quinoline synthesis under solvent-free conditions , 2007 .

[16]  K. Niknam,et al.  Molybdatophosphoric Acid/NaNO2/Wet SiO2 as an Efficient System for the Aromatization of 1,2‐Dihydroquinolines under Mild and Heterogeneous Conditions , 2007 .

[17]  H. R. Darabi,et al.  Benign approaches for the microwave-assisted synthesis of quinoxalines , 2007 .

[18]  K. Niknam,et al.  H4SiW12O40-xH2O as a New Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-one , 2007 .

[19]  M. Heravi,et al.  On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 · 5H2O , 2007 .

[20]  M. Zolfigol,et al.  Preparation of indolylmethanes catalyzed by metal hydrogen sulfates , 2006 .

[21]  M. Zolfigol,et al.  Silica Sulfuric Acid and Silica Chloride as Efficient Reagents for Organic Reactions , 2006 .

[22]  M. Zolfigol,et al.  Silica sulfuric acid as an efficient and recyclable catalyst for the methoxymethylation of alcohols under solvent-free conditions , 2006 .

[23]  M. Zolfigol,et al.  Molybdatophosphoric Acid/NaNO2 as an Efficient Procedure for the Chemoselective N‐Nitrosation of Secondary Amines , 2006 .

[24]  J. Clark,et al.  Catalytic properties of several palladium complexes covalently anchored onto silica for the aerobic oxidation of alcohols , 2006 .

[25]  M. Zolfigol,et al.  The use of silica sulfuric acid as an efficient catalyst for deprotection of trimethylsilyl ethers to the corresponding alcohols under mild and heterogeneous conditions , 2006 .

[26]  M. Zolfigol,et al.  Oxidation of 1,4-dihydropyridines under mild and heterogeneous conditions using solid acids , 2006 .

[27]  J. Desrivot,et al.  Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. , 2006, Bioorganic & medicinal chemistry letters.

[28]  S. Tsang,et al.  Catalytic oxidation of alcohols using molecular oxygen mediated by poly(ethylene glycol)-supported nitroxyl radicals , 2005 .

[29]  T. Thiemann,et al.  Fluorescent solvatochromism of bi-polar N,N-diphenylaminoaryl-substituted hexaazatriphenylenes, tetraazaphenanthrene, and quinoxalines , 2005 .

[30]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[31]  C. Yao,et al.  Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines , 2005 .

[32]  H. Ila,et al.  Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: a novel highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines. , 2005, Organic letters.

[33]  R. Taylor,et al.  Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation , 2005 .

[34]  C. Lindsley,et al.  General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines , 2004 .

[35]  C. D. Wilfred,et al.  Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. , 2004, Organic & biomolecular chemistry.

[36]  B. Das,et al.  Silica‐Supported Sodium Hydrogen Sulfate Catalyzed Facile Transformation of p‐Hydroxybenzyl Alcohols to p‐Hydroxybenzyl Ethers and Thioethers , 2004 .

[37]  M. Zolfigol,et al.  Catalytic Friedel–Crafts Acylation of Alkoxybenzenes Mediated by Aluminum Hydrogensulfate in Solution and Solvent-Free Conditions , 2003 .

[38]  C. D. Wilfred,et al.  Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. , 2003, Chemical communications.

[39]  R. Reynolds,et al.  Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. , 2002, Journal of medicinal chemistry.

[40]  I. Hardcastle,et al.  Synthesis of 6,8-substituted-5,7-difluoro-3,4-dihydro-1H-quinoxalin-2-ones via reductive cyclisation of 2,4,6-substituted-3,5-difluoronitrobenzenes , 2002 .

[41]  S. Antoniotti,et al.  Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines , 2002 .

[42]  M. Crossley,et al.  Laterally-extended porphyrin systems incorporating a switchable unit. , 2002, Chemical communications.

[43]  C. Hulme,et al.  Two-step solution-phase synthesis of novel quinoxalinones utilizing a UDC (Ugi/de-Boc/cyclize) strategy , 2002 .

[44]  M. Zolfigol,et al.  A mild and efficient method for cleavage of CN using Mg(HSO4)2 in the presence of wet SiO2 , 2002 .

[45]  T. Ozawa,et al.  Molecular design and evaluation of quinoxaline-carbohydrate hybrids as novel and efficient photo-induced GG-selective DNA cleaving agents. , 2002, Chemical communications.

[46]  J. Sessler,et al.  Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. , 2002, Journal of the American Chemical Society.

[47]  N. Ede,et al.  Solid-phase synthesis of quinoxalines on SynPhase™ Lanterns , 2001 .

[48]  I. Sage,et al.  Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications , 2001 .

[49]  N. Xekoukoulotakis,et al.  Synthesis of quinoxalines by cyclization of α-arylimino oximes of α-dicarbonyl compounds , 2000 .

[50]  J. Vagner,et al.  A solid phase traceless synthesis of quinoxalinones , 2000 .

[51]  A. Elwahy Synthesis of New Benzo-substituted Macrocyclic Ligands Containing Quinoxaline Subunits , 2000 .

[52]  F. Zaragoza,et al.  Solid-Phase Synthesis of Substituted 4-Acyl-1,2,3,4-tetrahydroquinoxalin-2-ones , 1999 .

[53]  R. Rivero,et al.  SOLID PHASE SYNTHESIS OF 3,4-DISUBSTITUTED-7-CARBAMOYL-1,2,3,4-TETRAHYDROQUINOXALIN-2-ONES , 1997 .

[54]  G. Mcmahon,et al.  Tyrphostins. 5. Potent inhibitors of platelet-derived growth factor receptor tyrosine kinase: structure-activity relationships in quinoxalines, quinolines, and indole tyrphostins. , 1996, Journal of medicinal chemistry.

[55]  J. Zaldívar,et al.  Sulfuric Acid on Silica-gel: an Inexpensive Catalyst for Aromatic Nitration , 1996 .

[56]  N. Sato 6.03 – Pyrazines and their Benzo Derivatives , 1996 .

[57]  A. Monge,et al.  Novel antagonists of 5-HT3 receptors. Synthesis and biological evaluation of piperazinylquinoxaline derivatives. , 1993, Journal of medicinal chemistry.

[58]  K. Makino,et al.  Regent progress in the quinoxaline chemistry. Synthesis and biological activity , 1988 .

[59]  E. Werstiuk,et al.  Quinoxaline Chemistry: Developments 1963-1975 , 1978 .

[60]  J. Markgraf,et al.  Strained heterocyclic systems. VI. Basicities of some quinoxalines , 1972 .