Application of the Wavelet Multi-resolution Analysis and Hilbert transform for the prediction of gear tooth defects

In machine defect detection, namely those of gears, the major problem is isolating the defect signature from the measured signal, especially where there is significant background noise or multiple machine components. This article presents a method of gear defect detection based on the combination of Wavelet Multi-resolution Analysis and the Hilbert transform. The pairing of these techniques allows simultaneous filtering and denoising, along with the possibility of detecting transitory phenomena, as well as a demodulation. This paper presents a numerical simulation of the requisite mathematical model followed by its experimental application of acceleration signals measured on defective gears on a laboratory test rig. Signals were collected under various gear operating conditions, including defect size, rotational speed, and frequency bandwidth. The proposed method compares favourably to commonly used analysis tools, with the advantage of enabling defect frequency isolation, thereby allowing detection of even small or combined defects.

[1]  C. Pachaud,et al.  CREST FACTOR AND KURTOSIS CONTRIBUTIONS TO IDENTIFY DEFECTS INDUCING PERIODICAL IMPULSIVE FORCES , 1997 .

[2]  M. Zuo,et al.  Gearbox fault detection using Hilbert and wavelet packet transform , 2006 .

[3]  Kikuo Nezu,et al.  Design of mixture de-noising for detecting faulty bearing signals , 2005 .

[4]  Abderrazek Djebala,et al.  Optimisation de l'analyse multirésolution en ondelettes des signaux de choc. Application aux signaux engendrés par des roulements défectueux , 2007 .

[5]  Jing Lin,et al.  Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis , 2000 .

[6]  David,et al.  Application of acoustic emission to seeded gear fault detection , 2005 .

[7]  Akira Yoshida,et al.  A Study on Diagnosis of Tooth Surface Failure by Wavelet Transform of Dynamic Characteristics , 2000 .

[8]  Ménad Sidahmed,et al.  Analyse des vibrations d'un engrenage : cepstre, corrélation, spectre , 1991 .

[9]  Cheng-Kuo Sung,et al.  Locating defects of a gear system by the technique of wavelet transform , 2000 .

[10]  Giorgio Dalpiaz,et al.  Effectiveness and Sensitivity of Vibration Processing Techniques for Local Fault Detection in Gears , 2000 .

[11]  Amiya R Mohanty,et al.  Monitoring gear vibrations through motor current signature analysis and wavelet transform , 2006 .

[12]  P. D. McFadden,et al.  APPLICATION OF WAVELETS TO GEARBOX VIBRATION SIGNALS FOR FAULT DETECTION , 1996 .

[13]  G. DALPIAZ,et al.  GEAR FAULT MONITORING: COMPARISON OF VIBRATION ANALYSIS TECHNIQUES , 2001 .

[14]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  N. Hamzaoui,et al.  Detection of rolling bearing defects using discrete wavelet analysis , 2008 .

[16]  H. Zheng,et al.  GEAR FAULT DIAGNOSIS BASED ON CONTINUOUS WAVELET TRANSFORM , 2002 .

[17]  Nguyen Phong Dien,et al.  Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps , 2004 .

[18]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[19]  Fabrice Bolaers,et al.  Paramétrage, utilisation et apport de l'analyse cepstrale en maintenance prévisionnelle , 2004 .

[20]  M. Sidahmed,et al.  Détection précoce de défauts dans les engrenages par analyse vibratoire , 1990 .

[21]  Ming J. Zuo,et al.  GEARBOX FAULT DIAGNOSIS USING ADAPTIVE WAVELET FILTER , 2003 .

[22]  Fakher Chaari,et al.  Numerical and experimental analysis of a gear system with teeth defects , 2005 .