暂无分享,去创建一个
[1] Yangyang Xu,et al. On the convergence of higher-order orthogonal iteration , 2015 .
[2] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[3] Sabine Van Huffel,et al. Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..
[4] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[5] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[6] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[7] B. Khoromskij,et al. Low rank Tucker-type tensor approximation to classical potentials , 2007 .
[8] Bart De Moor,et al. Multiview Partitioning via Tensor Methods , 2013, IEEE Transactions on Knowledge and Data Engineering.
[9] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[10] Tamara G. Kolda,et al. Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[11] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[12] Mason A. Porter,et al. Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..
[13] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[14] L. Lathauwer,et al. On the best low multilinear rank approximation of higher-order tensors , 2010 .
[15] M. J. D. Powell,et al. On search directions for minimization algorithms , 1973, Math. Program..
[16] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[17] Sabine Van Huffel,et al. Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors , 2008, Numerical Algorithms.
[18] Berkant Savas,et al. Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.
[19] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[20] Rasmus Bro,et al. Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .
[21] Martin Rosvall,et al. Maps of sparse Markov chains efficiently reveal community structure in network flows with memory , 2016, ArXiv.
[22] Tamara G. Kolda,et al. Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[23] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .
[24] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..
[25] Bora Uçar,et al. High Performance Parallel Algorithms for the Tucker Decomposition of Sparse Tensors , 2016, 2016 45th International Conference on Parallel Processing (ICPP).
[26] Christos Faloutsos,et al. Mining billion-scale tensors: algorithms and discoveries , 2016, The VLDB Journal.
[27] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[28] Pierre Comon,et al. Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..
[29] Berkant Savas,et al. Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor , 2011, SIAM J. Matrix Anal. Appl..
[30] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[31] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[32] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[33] Maryam Dehghan,et al. Analyzing Large and Sparse Tensor Data using Spectral Low-Rank Approximation , 2020, ArXiv.
[34] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[35] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[36] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[37] Vladimir Batagelj,et al. Density based approaches to network analysis Analysis of Reuters terror news network , 2003 .
[38] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[39] Daniela Calvetti,et al. Matrix methods in data mining and pattern recognition , 2009, Math. Comput..
[40] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[41] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[42] Lars Eldén,et al. Spectral partitioning of large and sparse 3‐tensors using low‐rank tensor approximation , 2020, Numer. Linear Algebra Appl..
[43] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[44] R. Fletcher. Practical Methods of Optimization , 1988 .
[45] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[46] Ivan V. Oseledets,et al. Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case , 2010, SIAM J. Sci. Comput..
[47] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[48] Axel Ruhe,et al. Algorithms for separable nonlinear least squares problems , 1980 .
[49] Yousef Saad,et al. Block Krylov–Schur method for large symmetric eigenvalue problems , 2008, Numerical Algorithms.