Nucleation of carbon-sulfur phases by manipulation of vertically-aligned mm-long films of iron-filled few-wall/multiwall carbon nanotubes

[1]  L. Lei,et al.  Twist-angle-disorder and sulfur-induced annihilation of percolative magnetism in exfoliated lamellae of highly oriented pyrolytic graphite , 2021, Carbon Trends.

[2]  L. Lei,et al.  Temperature-dependent c-axis lattice-spacing reduction and novel structural recrystallization in carbon nano-onions filled with Fe3C/α-Fe nanocrystals , 2020, Nano Express.

[3]  F. Boi,et al.  Magnetic ordering and interactions in iron-filled carbon foam , 2019, Materials Today Chemistry.

[4]  Yi He,et al.  Temperature driven magnetic transitions in FePd3 filled monolayer carbon foam and Fe3C/α-Fe filled carbon nanotubes , 2019, Journal of Applied Physics.

[5]  Yi He,et al.  Chlorine-assisted synthesis of Fe3C-filled mm-long vertically aligned arrays of multiwall carbon nanotubes , 2018, Materials Research Express.

[6]  Yi He,et al.  Cl-Assisted Large Scale Synthesis of Cm-Scale Buckypapers of Fe3C-Filled Carbon Nanotubes with Pseudo-Capacitor Properties: The Key Role of SBA-16 Catalyst Support as Synthesis Promoter , 2017, Materials.

[7]  Yi He,et al.  Micrometre-length continuous single-crystalline nm-thin Fe3C-nanowires with unusual 010 preferred orientation inside radial few-wall carbon nanotube structures: the key role of sulfur in viscous boundary layer CVS of ferrocene , 2017 .

[8]  Yi He,et al.  Controlling high coercivities in cm-scale buckypapers with unusual stacking of vertically aligned and randomly entangled Fe-filled carbon nanotubes , 2016 .

[9]  N. Zhang,et al.  Ultrahigh-Power-Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation. , 2016, Small.

[10]  Yi He,et al.  Mapping the transition from free-standing vertically-aligned Fe3C-filled carbon nanotube films to entangled randomly-oriented carbon nanotube buckypapers in presence of a great excess of ferrocene , 2016 .

[11]  Yi He,et al.  Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates. , 2016, Chemical communications.

[12]  Taze Peci,et al.  Length and α-Fe content control of self-organised ferromagnetic nanowires encapsulated by multiwalled carbon nanotubes by low flow-rate CVD , 2016 .

[13]  Taze Peci,et al.  Iron-filled multiwalled carbon nanotubes surface-functionalized with paramagnetic Gd (III): A candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure , 2015 .

[14]  Yi He,et al.  Controlling the quantity of α-Fe inside multiwall carbon nanotubes filled with Fe-based crystals: The key role of vapor flow-rate , 2014 .

[15]  F. Boi,et al.  Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires , 2013 .

[16]  F. Boi,et al.  Boundary layer chemical vapor synthesis of self-organized radial filled-carbon-nanotube structures , 2013 .

[17]  M. Terrones,et al.  Conducting linear chains of sulphur inside carbon nanotubes , 2013, Nature Communications.

[18]  Xiaoping Li,et al.  Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery , 2013, Journal of Solid State Electrochemistry.

[19]  I. Felner,et al.  Superconductivity in Sulfur-Doped Amorphous Carbon Films , 2013, 1301.5466.

[20]  N. Grobert,et al.  Tuning the magnetic properties of iron-filled carbon nanotubes , 2012 .

[21]  Cinzia Casiraghi,et al.  Probing the nature of defects in graphene by Raman spectroscopy. , 2012, Nano letters.

[22]  B. Büchner,et al.  Room temperature magnetometry of an individual iron filled carbon nanotube acting as nanocantilever , 2011 .

[23]  V. Dhanak,et al.  Carbon Nanotubes in Cancer Therapy and Drug Delivery , 2011, Journal of drug delivery.

[24]  J. Biskupek,et al.  Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. , 2011, Nature materials.

[25]  B. Büchner,et al.  Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy , 2010, Nanotechnology.

[26]  B. Büchner,et al.  Carbon Nanotubes Filled with Ferromagnetic Materials , 2010, Materials.

[27]  R. Zhang,et al.  Magnetoresistive phenomena in an Fe-filled carbon nanotube/elastomer composite , 2010, Nanotechnology.

[28]  M. Wirth,et al.  Biocompatibility of iron filled carbon nanotubes in vitro. , 2009, Journal of nanoscience and nanotechnology.

[29]  F. Kang,et al.  In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper , 2009 .

[30]  Y. Kopelevich,et al.  Magnetization measurement of a possible high-temperature superconducting state in amorphous carbon doped with sulfur , 2009, 0902.4631.

[31]  F. Kang,et al.  The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes , 2009 .

[32]  F. Kang,et al.  Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber , 2008 .

[33]  H. Cong,et al.  Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles , 2008 .

[34]  Jiaqi Huang,et al.  Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests , 2008 .

[35]  B. Wei,et al.  The effect of sulfur on the number of layers in a carbon nanotube , 2007 .

[36]  Lifeng Liu,et al.  Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. , 2007, Nano letters.

[37]  F. Kang,et al.  Single-Crystalline Permalloy Nanowires in Carbon Nanotubes: Enhanced Encapsulation and Magnetization , 2007 .

[38]  F. Kang,et al.  Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes , 2007 .

[39]  Haiyan Lin,et al.  Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes , 2007 .

[40]  F. Kang,et al.  Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor , 2007 .

[41]  V. Gavriljuk,et al.  Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubes , 2007 .

[42]  I. Mönch,et al.  Phase composition and magnetic characteristics of Fe-filled multi-walled carbon nanotubes , 2006 .

[43]  B. Sitharaman,et al.  Gadonanotubes as new high-performance MRI contrast agents , 2006, International journal of nanomedicine.

[44]  T. Gemming,et al.  Growth and characterization of filled carbon nanotubes with ferromagnetic properties , 2006 .

[45]  I. Mönch,et al.  Synthesis, Properties, and Applications of Ferromagnetic‐Filled Carbon Nanotubes. , 2006 .

[46]  E. Mendoza,et al.  Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium , 2006 .

[47]  M. Terrones,et al.  Magnetism in Fe-based and carbon nanostructures: Theory and applications , 2006 .

[48]  T. Gemming,et al.  Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene , 2005 .

[49]  A. Leonhardt,et al.  ESR of Fe‐Filled Multi‐Walled Carbon Nanotubes , 2005 .

[50]  A. Sood,et al.  Magnetic behavior of iron-filled multiwalled carbon nanotubes , 2005 .

[51]  S. Xie,et al.  Direct Synthesis of a Macroscale Single‐Walled Carbon Nanotube Non‐Woven Material , 2004 .

[52]  A. Greiner,et al.  The role of iron carbide in multiwalled carbon nanotube growth , 2004 .

[53]  Y. Kopelevich,et al.  Local superconductivity and ferromagnetism interplay in graphite-sulfur composites , 2003 .

[54]  Claus M. Schneider,et al.  Synthesis and properties of filled carbon nanotubes , 2003 .

[55]  P. Watts,et al.  Fe-Filled Carbon Nanotubes: Nano-electromagnetic Inductors , 2002 .

[56]  M. Maple,et al.  Coexistence of superconductivity and ferromagnetism in the graphite–sulphur system , 2002 .

[57]  M. Terrones,et al.  Hysteresis shift in Fe-filled carbon nanotubes due to γ-Fe , 2002 .

[58]  N. Grobert,et al.  Mössbauer Study of Iron-Containing Carbon Nanotubes , 2002 .

[59]  Y. Kopelevich,et al.  Indication of superconductivity at 35 K in graphite-sulfur composites. , 2001, Physical review letters.

[60]  O. Stéphan,et al.  Sulfur: the key for filling carbon nanotubes with metals , 1999 .

[61]  O. Stéphan,et al.  Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur , 1998 .

[62]  V. Dravid,et al.  A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters , 1997 .

[63]  L. Lei,et al.  Annihilation of percolative correlation signals in sulfur doped highly oriented pyrolytic graphite with hexagonal Moiré superlattices , 2021 .

[64]  B. Büchner,et al.  Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors , 2011 .

[65]  B. Büchner,et al.  Magnetic properties of α-Fe and Fe3C nanowires , 2010 .

[66]  N. Sano,et al.  Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field , 2007 .