Chemical Structure and Occurrence of Natural Polyisoprenes

Historical Outline Rubber Production and Consumption Structure of Rubber Synthetic Rubber Outlook and Perspectives Rubber Production Technology Rubber Protein Allergy Purification of Natural Rubber Chemical Structure of Isoprene Units Geometric Isomerism of Isoprene Unit Structure of the Chain-Ends of Naturally Occurring Polyisoprenes Molecular Weight and Molecular Weight Distribution Occurrence of Polyisoprene in Living Organisms cis-Polyisoprene in Higher Plants trans-Polyisoprene in Other Higher Plants and Grasses cis-Polyisoprene in Mushrooms Natural Rubber from H. brasiliensis Production of Commercial Natural Rubber and Latex Composition of Natural Rubber Structure of both Chain Ends of Natural Rubber Structure of Branch-Points and Gel Structure of trans-Polyisoprene from Higher Plants trans-Polyisoprene from Chicle trans-Polyisoprene from Gutta Percha and Balata trans-Polyisoprene from Eucommia ulmoides Other Natural Polyisoprenes Structure of cis-Polyisoprene from Fungi Structure of cis-Polyisoprene from Other Higher Plants

[1]  Yasuyuki Tanaka STRUCTURE AND BIOSYNTHESIS MECHANISM OF NATURAL POLYISOPRENE , 1989 .

[2]  J. Shipman,et al.  Synthesis of Rubber by Fungi. , 1955, Science.

[3]  K. Shiba,et al.  Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides , 1997 .

[4]  K. Cornish,et al.  Rubber transferase activity in rubber particles of guayule. , 1990 .

[5]  M. Takagi,et al.  Structural characterization of ficaprenol-11 by 13C nuclear magnetic resonance. , 1979, The Biochemical journal.

[6]  R. Schuster,et al.  Carbon-13 nuclear magnetic resonance determination of rubber in guayule (Parthenium argentatum) , 1982 .

[7]  D. Mcintyre,et al.  Chemistry and Structure of Natural Rubbers , 1979 .

[8]  H. Mooibroek,et al.  Alternative sources of natural rubber , 2000, Applied Microbiology and Biotechnology.

[9]  J. Sakdapipanich,et al.  Characterization of fatty acids linked to natural rubber—role of linked fatty acids on crystallization of the rubber , 2000 .

[10]  H. Pandey,et al.  Spectral studies on plant rubbers , 1986 .

[11]  H. M. Behl,et al.  Quantification of polyisoprenes from some promising euphorbs , 1995 .

[12]  F. Lynen,et al.  Über den biologischen Weg zum Naturkautschuk , 1960 .

[13]  R. G. Benedict,et al.  Occurrence of polyisoprene in Lactarius species. , 1961, Biochimica et biophysica acta.

[14]  T. Koyama,et al.  Structure of in vitro synthesized rubber from fresh bottom fraction of Hevea latex , 1997 .

[15]  M. A. Foster,et al.  Stimulation of Isopentenyl Pyrophosphate Incorporation into Polyisoprene in Extracts from Guayule Plants (Parthenium argentatum Gray) by Low Temperature and 2-(3,4-Dichlorophenoxy) Triethylamine. , 1989, Plant physiology.

[16]  S. Kawahara,et al.  Origin of Characteristic Properties of Natural Rubber—Synergistic Effect of Fatty Acids on Crystallization of cis-1,4-Polyisoprene: I, Saturated and Unsaturated Fatty Acids , 1996 .

[17]  S. Kawahara,et al.  Trans-Isofrene Units in Natural Rubber , 1994 .

[18]  S. C. Nyburg A statistical structure for crystalline rubber , 1954 .

[19]  E. C. Gregg,et al.  The Relationship of Properties of Synthetic Poly(Isoprene) and Natural Rubber in The Factory. The Effect of Non-Rubber Constituents of Natural Rubber , 1973 .

[20]  P. E. Hurley History of Natural Rubber , 1981 .

[21]  T. Takigawa,et al.  Long-chain betulaprenol-type polyprenols from the leaves of Ginkgo biloba. , 1983, The Biochemical journal.

[22]  Eng Aik Hwee,et al.  Origin of Characteristic Properties of Natural Rubber—Synergistic Effect of Fatty Acids on Crystallization of cis-1,4-Polyisoprene: II, Mixed and Esterified Fatty Acids in Natural Rubber , 1996 .

[23]  J. Sakdapipanich,et al.  Long-Chain Branching and Mechanism Controlling Molecular Weight in Hevea Rubber , 1999 .

[24]  K. Cornish,et al.  Characterization and Performance Testing of Guayule Latex , 1996 .

[25]  Yasuyuki Tanaka,et al.  Long-chain polyprenols and rubber in young leaves of Hevea brasiliensis , 1998 .

[26]  H. Sato,et al.  Determination of arrangement of isoprene units in pig liver dolichol by 13C-n.m.r. spectroscopy. , 1987, Biochemical Journal.

[27]  J. D'auzac,et al.  The composition of natural latex fromHevea brasiliensis , 1993, Clinical reviews in allergy.

[28]  J. Visser,et al.  Detection of rubber in cultured material of Parthenium argentatum gray (guayule) , 1991 .

[29]  Hisaya Sato,et al.  Structure and Biosynthesis Mechanism of Natural Cis-Polyisoprene from Goldenrod , 1983 .

[30]  T. Koyama,et al.  Rubber formation by fresh bottom fraction of hevea latex , 1997 .

[31]  K. Ute,et al.  Structure and Biosynthesis Mechanism of Rubber from Fungi , 1990 .

[32]  B. C. Sekhar Degradation and crosslinking of polyisoprene in Hevea Brasiliensis latex during processing and storage , 1960 .

[33]  S. Kawahara,et al.  Initiation of rubber biosynthesis in Hevea brasiliensis: characterization of initiating species by structural analysis , 1996 .

[34]  R. Wititsuwannakul,et al.  Possible mechanisms controlling molecular weight of rubbers in Hevea brasiliensis , 1996 .

[35]  J. L. Angulo-Sánchez,et al.  Long Chain Branching in Natural Hevea Rubber-Determination by Gel Permeation Chromatography , 1981 .

[36]  D. R. Burfield Epoxy groups responsible for crosslinking in natural rubber , 1974, Nature.

[37]  K. Fuller,et al.  The influence of molecular weight distribution and branching on the relaxation behaviour of uncrosslinked natural rubber , 1990 .

[38]  M. F. Balandrin,et al.  The showy milkweed, Asclepias speciosa: a potential new semi-arid land crop for energy and chemicals , 1984 .

[39]  Yasuyuki Tanaka,et al.  Structure and biosynthesis mechanism of rubber from Lactarius mushroom , 1992 .

[40]  S. Kawahara,et al.  Molecular weight distribution of polyisoprene from Lactarius volemus , 1998 .

[41]  C. Bunn Molecular structure and rubber-like elasticity I. The crystal structures of β gutta-percha, rubber and polychloroprene , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  J. Tangpakdee,et al.  Characterization of sol and gel in Hevea natural rubber , 1997 .

[43]  N. Shimizu,et al.  A reticuloendothelial system-activating glycan from the barks ofEucommia ulmoides , 1990 .

[44]  B. L. Archer,et al.  New aspects of rubber biosynthesis , 1987 .