A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char.

The combustion characteristics of Karanj fruit hulls char (KFH-char) was investigated with thermogravimetry analysis (TGA). The TGA outlined the char combustion thermographs at a different heating rate and isoconversional methods expressed the combustion kinetics. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods authenticated the char average activation energy at 62.13 and 68.53kJ/mol respectively, enough to derive the char to burnout. However, the Coats-Redfern method verified the char combustion via complex multi-step mechanism; the second stage mechanism has 135kJ/mol average activation energy. The TGA thermographs and kinetic parameters revealed the adequacy of the KFH-char as fuel substrate than its precursor, Karanj fruit hulls (KFH).

[1]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[2]  Combustion study of partially gasified willow and DDGS chars using TG analysis and COMSOL modeling , 2012 .

[3]  M. Asif,et al.  Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. , 2015, Bioresource technology.

[4]  Jianliang Zhang,et al.  Thermogravimetric Analysis of Coal Char Combustion Kinetics , 2014 .

[5]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[6]  C. G. Mothé,et al.  Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods , 2013, Journal of Thermal Analysis and Calorimetry.

[7]  Benjamin L. Legendre,et al.  Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies , 2011 .

[8]  Xiaoqian Ma,et al.  Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. , 2012, Bioresource technology.

[9]  Zhihua Wang,et al.  Oxy-fuel combustion characteristics and kinetic parameters of lignite coal from thermo-gravimetric data , 2013 .

[10]  M. V. Gil,et al.  Thermal behaviour and kinetics of coal/biomass blends during co-combustion. , 2010, Bioresource technology.

[11]  Pietro Bartocci,et al.  Thermogravimetric analysis and kinetic study of poplar wood pyrolysis , 2012 .

[12]  Chao Gai,et al.  Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis. , 2015, Bioresource technology.

[13]  J. Yanik,et al.  Combustion behavior of different kinds of torrefied biomass and their blends with lignite. , 2015, Bioresource technology.

[14]  F. Agblevor,et al.  Thermogravimetric and kinetic study of Pinyon pine in the various gases. , 2014, Bioresource technology.

[15]  Xigeng Song,et al.  Pyrolysis behaviors and kinetics of refining and chemicals wastewater, lignite and their blends through TGA. , 2015, Bioresource technology.

[16]  A. Aboulkas,et al.  Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. , 2011, Bioresource technology.

[17]  J. J. Pis,et al.  Reactivity of pyrolysis chars related to precursor coal chemistry , 2000 .

[18]  Timothy J. Mays,et al.  A simple kinetic analysis to determine the intrinsic reactivity of coal chars , 2005 .

[19]  A. Zabaniotou,et al.  Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). , 2011, Bioresource technology.

[20]  Janusz A. Kozinski,et al.  Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass , 2014 .

[21]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[22]  Zhen-qian Chen,et al.  Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. , 2014 .

[23]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[24]  S. Ceylan,et al.  Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. , 2014, Bioresource technology.

[25]  C. D. Doyle Kinetic analysis of thermogravimetric data , 1961 .

[26]  Fu-Shen Zhang,et al.  Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment , 2010 .

[27]  Mohd Jindra Aris,et al.  Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). , 2010, Bioresource technology.

[28]  Defu Che,et al.  A Study on Coal Properties and Combustion Characteristics of Blended Coals in Northwestern China , 2011 .

[29]  Zhiquan Hu,et al.  Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. , 2015, Bioresource technology.

[30]  Khudzir Ismail,et al.  Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). , 2012, Bioresource technology.

[31]  M. Asif,et al.  Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. , 2015, Bioresource technology.

[32]  Xin Xiao,et al.  Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. , 2014, Bioresource technology.

[33]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[34]  Thomas Aicher,et al.  The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis , 2013 .