Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells

[1]  Dewei Zhao,et al.  A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells , 2022, Nature Energy.

[2]  Zhengshan J. Yu,et al.  Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells , 2022, Nature Photonics.

[3]  B. Richards,et al.  Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency , 2022, Nature Energy.

[4]  Thomas G. Allen,et al.  Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx , 2022, Science.

[5]  M. Saidaminov,et al.  Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact , 2022, Nature Energy.

[6]  Yongsheng Chen,et al.  Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. , 2022, Journal of the American Chemical Society.

[7]  Zhengbao Yang,et al.  Co-assembled Monolayers as Hole -se lective Contact for High-Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long-Term Stability. , 2022, Angewandte Chemie.

[8]  Zhen Li,et al.  Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells , 2022, Science.

[9]  D. Hertel,et al.  Perovskite–organic tandem solar cells with indium oxide interconnect , 2022, Nature.

[10]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[11]  Tanghao Liu,et al.  Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[12]  SeJin Ahn,et al.  Novel Phenothiazine‐Based Self‐Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable p‐i‐n Perovskite Solar Cells , 2021, Advanced Energy Materials.

[13]  Yongsheng Chen,et al.  Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymer with Noncovalently Conformational Locking for Efficient Perovskite Solar Cells. , 2021, Angewandte Chemie.

[14]  Weihong Zhu,et al.  Improving Contact and Passivation of Buried Interface for High‐Efficiency and Large‐Area Inverted Perovskite Solar Cells , 2021, Advanced Functional Materials.

[15]  A. Jen,et al.  Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. , 2021, Chemical Society reviews.

[16]  Zhaoxin Wu,et al.  Surface-tension release in PTAA-based inverted perovskite solar cells , 2021, Organic Electronics.

[17]  Jinsong Huang,et al.  Stabilizing perovskite-substrate interfaces for high-performance perovskite modules , 2021, Science.

[18]  Weihong Zhu,et al.  Bonding Strength Regulates Anchoring‐Based Self‐Assembly Monolayers for Efficient and Stable Perovskite Solar Cells , 2021, Advanced Functional Materials.

[19]  A. Abate,et al.  Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells , 2021 .

[20]  Emerging Nanotechnologies for Renewable Energy , 2021 .

[21]  A. Jen,et al.  Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-based Dopant-free Polymer Semiconductor. , 2020, Angewandte Chemie.

[22]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[23]  M. Nazeeruddin,et al.  Applications of Self‐Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability , 2020, Advanced Energy Materials.

[24]  Liyuan Han,et al.  Efficiency progress of inverted perovskite solar cells , 2020 .

[25]  Xianglang Sun,et al.  Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells , 2020 .

[26]  Soohyun Bae,et al.  Historical Analysis of High‐Efficiency, Large‐Area Solar Cells: Toward Upscaling of Perovskite Solar Cells , 2020, Advanced materials.

[27]  Shinuk Cho,et al.  Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells , 2020, Advanced materials.

[28]  A. Jen,et al.  Dopant‐Free Crossconjugated Hole‐Transporting Polymers for Highly Efficient Perovskite Solar Cells , 2020, Advanced science.

[29]  S. Tiwari,et al.  A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status , 2020 .

[30]  N. Park,et al.  Scalable fabrication and coating methods for perovskite solar cells and solar modules , 2020, Nature Reviews Materials.

[31]  Sagar M. Jain,et al.  Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells , 2020, Advanced Energy Materials.

[32]  Guofu Zhou,et al.  Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells , 2020 .

[33]  H. Tian,et al.  Synergistic Coassembly of Highly Wettable and Uniform Hole‐Extraction Monolayers for Scaling‐up Perovskite Solar Cells , 2019, Advanced Functional Materials.

[34]  Bernd Rech,et al.  Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells , 2019, Energy & Environmental Science.

[35]  A. Jen,et al.  Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells , 2019 .

[36]  T. Park,et al.  Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report , 2019, Advanced Functional Materials.

[37]  P. Chan,et al.  Solution‐Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for High‐Performance Solar Cells , 2019, Advanced materials.

[38]  Yongfang Li,et al.  High Efficiency Planar p‐i‐n Perovskite Solar Cells Using Low‐Cost Fluorene‐Based Hole Transporting Material , 2019, Advanced Functional Materials.

[39]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[40]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[41]  Fei Huang,et al.  From scalable solution fabrication of perovskite films towards commercialization of solar cells , 2019, Energy & Environmental Science.

[42]  M. Can,et al.  Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells , 2019, Energy & Environmental Science.

[43]  N. Martín,et al.  Hole transporting materials for perovskite solar cells: a chemical approach. , 2018, Chemical Society reviews.

[44]  Zhen Li,et al.  Hole-Transporting Materials for Perovskite Solar Cells , 2018, Asian Journal of Organic Chemistry.

[45]  S. Albrecht,et al.  Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells , 2018, Advanced Energy Materials.

[46]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[47]  Shihe Yang,et al.  Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells , 2018 .

[48]  A. Jen,et al.  Highly Efficient Porphyrin‐Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor , 2017, Advanced materials.

[49]  Xianglang Sun,et al.  Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells , 2017 .

[50]  Li-ping Zhu,et al.  Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer. , 2017, ACS applied materials & interfaces.

[51]  Kwanghee Lee,et al.  Achieving Large‐Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer , 2017, Advanced materials.

[52]  Thomas M. Brown,et al.  Advances in hole transport materials engineering for stable and efficient perovskite solar cells , 2017 .

[53]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[54]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[55]  M. Li,et al.  Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. , 2016, ACS nano.

[56]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[57]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[58]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[59]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[60]  S. Hecht,et al.  Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self‐Assembled Monolayers , 2014 .

[61]  G. Hadziioannou,et al.  Metal Residues in Semiconducting Polymers: Impact on the Performance of Organic Electronic Devices. , 2014, ACS macro letters.

[62]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[63]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[64]  F. Huang,et al.  Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. , 2013, Chemical Society reviews.

[65]  A. McNeil,et al.  Conjugated Polymer Synthesis via Catalyst-Transfer Polycondensation (CTP): Mechanism, Scope, and Applications , 2013 .

[66]  G. Rus,et al.  Nanotechnology for Energy Production , 2013 .

[67]  M. Halik,et al.  Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. , 2013, ACS applied materials & interfaces.

[68]  Alessandro Troisi,et al.  What Is the Best Anchoring Group for a Dye in a Dye-Sensitized Solar Cell? , 2012, The journal of physical chemistry letters.

[69]  Peter J. Hotchkiss,et al.  The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. , 2012, Accounts of chemical research.

[70]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[71]  U. Scherf Counterion pinning in conjugated polyelectrolytes for applications in organic electronics. , 2011, Angewandte Chemie.

[72]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[73]  L. Hammarström,et al.  Artificial photosynthesis and solar fuels. , 2009, Accounts of chemical research.

[74]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[75]  Patrice Rannou,et al.  Processible conjugated polymers: from organic semiconductors to organic metals and superconductors , 2002 .

[76]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.