TableHop: An Actuated Fabric Display Using Transparent Electrodes

We present TableHop, a tabletop display that provides controlled self-actuated deformation and vibro-tactile feedback to an elastic fabric surface while retaining the ability for high-resolution visual projection. The surface is made of a highly stretchable pure spandex fabric that is electrostatically actuated using electrodes mounted on its top or underside. It uses transparent indium tin oxide electrodes and high-voltage modulation to create controlled surface deformations. Our setup actuates pixels and creates deformations in the fabric up to +/- 5 mm. Since the electrodes are transparent, the fabric surface functions as a diffuser for rear-projected visual images, and avoid occlusion by users or actuators. Users can touch and interact with the fabric to experience expressive interactions as with any fabric based shape-changing interface. By using frequency modulation in the high-voltage circuit, it can also create localized tactile sensations on the user's fingertip when touching the surface. We provide simulation and experimental results for the shape of the deformation and frequency of the vibration of the surface. These results can be used to build prototypes of different sizes and form-factors. We present a working prototype of TableHop that has 30x40 cm2 surface area and uses a grid of 3x3 transparent electrodes. It uses a maximum of 9.46 mW and can create tactile vibrations of up to 20 Hz. TableHop can be scaled to make large interactive surfaces and integrated with other objects and devices. TableHop will improve user interaction experience on 2.5D deformable displays.

[1]  Naoki Kawakami,et al.  GelForce: a vision-based traction field computer interface , 2005, CHI Extended Abstracts.

[2]  E. Marianne Kärrholm,et al.  Bending Modulus of Fibers Measured with the Resonance Frequency Method , 1953 .

[3]  Kasper Hornbæk,et al.  User-defined gestures for elastic, deformable displays , 2014, AVI.

[4]  Sanjeev Kumar Raghuwanshi,et al.  MODELLING OF SIMPLY SUPPORTED CIRCULAR DIAPHRAGM FOR TOUCH MODE CAPACITIVE SENSORS , 2015 .

[5]  Akira Wakita,et al.  Programmable blobs: a rheologic interface for organic shape design , 2011, Tangible and Embedded Interaction.

[6]  Hiroshi Ishii,et al.  Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices , 2012, UIST.

[7]  Buntarou Shizuki,et al.  Sinkpad: a malleable mouse pad consisted of an elastic material , 2013, CHI Extended Abstracts.

[8]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[9]  Sriram Subramanian,et al.  Is my phone alive?: a large-scale study of shape change in handheld devices using videos , 2014, CHI.

[10]  Ivan Poupyrev,et al.  Actuation and tangible user interfaces: the Vaucanson duck, robots, and shape displays , 2007, TEI.

[11]  Darren Leigh,et al.  Under the table interaction , 2006, UIST.

[12]  Tae-Heon Yang,et al.  TAXEL: Initial progress toward self-morphing visio-haptic interface , 2011, 2011 IEEE World Haptics Conference.

[13]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[14]  Jun Rekimoto,et al.  Lumen: interactive visual and shape display for calm computing , 2004, SIGGRAPH '04.

[15]  Geehyuk Lee,et al.  Trampoline: a double-sided elastic touch device for creating reliefs , 2014, UIST.

[16]  Kay M. Stanney,et al.  Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations , 2004, IEEE Computer Graphics and Applications.

[17]  Hiroshi Ishii,et al.  Topobo: a constructive assembly system with kinetic memory , 2004, CHI.

[18]  Sriram Subramanian,et al.  Tilt displays: designing display surfaces with multi-axis tilting and actuation , 2012, Mobile HCI.

[19]  Akiya Kamimura,et al.  MimicTile: a variable stiffness deformable user interface for mobile devices , 2012, CHI.

[20]  Xu Sun,et al.  Sticky Actuator: Free-Form Planar Actuators for Animated Objects , 2015, TEI.

[21]  Adiyan Mujibiya Corona: Interactivity of Body Electrostatics in Mobile Scenarios Using Wearable High-Voltage Static Charger , 2015, MobileHCI.

[22]  Ali Israr,et al.  TeslaTouch: electrovibration for touch surfaces , 2010, UIST.

[23]  M. Rahman and S. Chowdhury A Highly Accurate Closed-Form Model for Pull-in Voltage of Circular Diaphragms under Large Deflection , 2009 .

[24]  Pattie Maes,et al.  Sprout I/O: a texturally rich interface , 2008, TEI.

[25]  Edward H. Adelson,et al.  deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch , 2011, UIST.

[26]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[27]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[28]  Joo-Ho Lee,et al.  Shadow-free Interaction: A Proposal for Rear Projection Based Shape Display , 2014 .

[29]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[30]  Hiroshi Ishii,et al.  Surflex: a programmable surface for the design of tangible interfaces , 2008, CHI Extended Abstracts.

[31]  Hiroo Iwata,et al.  Project FEELEX: adding haptic surface to graphics , 2001, SIGGRAPH.

[32]  Olivier Bau,et al.  BubbleWrap: a textile-based electromagnetic haptic display , 2009, CHI Extended Abstracts.

[33]  Rudra Pratap,et al.  Elasto-Electrostatic Analysis of Circular Microplates Used in Capacitive Micromachined Ultrasonic Transducers , 2010, IEEE Sensors Journal.

[34]  Pattie Maes,et al.  Flexpad: highly flexible bending interactions for projected handheld displays , 2013, CHI.

[35]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[36]  Geehyuk Lee,et al.  Trampoline: a double-sided elastic touch device for repoussé and chasing techniques , 2014, CHI Extended Abstracts.

[37]  Rainer Groh,et al.  FlexiWall: Exploring Layered Data with Elastic Displays , 2014, ITS '14.

[38]  Hiroshi Ishii,et al.  Direct and gestural interaction with relief: a 2.5D shape display , 2011, UIST '11.

[39]  Takeshi Naemura,et al.  KineReels: extension actuators for dynamic 3D shape , 2011, SIGGRAPH '11.

[40]  Jan O. Borchers,et al.  MudPad: tactile feedback for touch surfaces , 2011, CHI EA '11.

[41]  Hiroshi Ishii,et al.  Relief: a scalable actuated shape display , 2010, TEI '10.

[42]  Hiroshi Ishii,et al.  Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays , 2013, CHI.

[43]  Majken Kirkegaard Rasmussen,et al.  Shape-changing interfaces: a review of the design space and open research questions , 2012, CHI.

[44]  E MALLINCKRODT,et al.  Perception by the skin of electrically induced vibrations. , 1953, Science.

[45]  Joseph A. Paradiso,et al.  A cuttable multi-touch sensor , 2013, UIST.

[46]  Naoki Kawakami,et al.  Control Method for a 3D Form Display with Coil-type Shape Memory Alloy , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[47]  David J. Beebe,et al.  Polarity Effect in Electrovibration for Tactile Display , 2006, IEEE Transactions on Biomedical Engineering.

[48]  Masatoshi Ishikawa,et al.  The deformable workspace: A membrane between real and virtual space , 2008, 2008 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems.

[49]  Jamie Zigelbaum,et al.  Shape-changing interfaces , 2011, Personal and Ubiquitous Computing.

[50]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[51]  Tek-Jin Nam,et al.  Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback , 2008, CHI.

[52]  Roger W. Brockett,et al.  Reconstructing the Shape of a Deformable Membrane from Image Data , 2000, Int. J. Robotics Res..

[53]  Michael R. Powers The Shapes of Things to Come , 2014 .

[54]  Sriram Subramanian,et al.  UltraHaptics: multi-point mid-air haptic feedback for touch surfaces , 2013, UIST.

[55]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[56]  Chris Harrison,et al.  Providing dynamically changeable physical buttons on a visual display , 2009, CHI.

[57]  Faisal Taher,et al.  Exploring Interactions with Physically Dynamic Bar Charts , 2015, CHI.

[58]  Sungmin Cho,et al.  ElaScreen: exploring multi-dimensional data using elastic screen , 2013, CHI Extended Abstracts.

[59]  Kenji Inoue,et al.  Vision-based detection of finger touch for haptic device using transparent flexible sheet , 2009, 2009 IEEE International Conference on Robotics and Automation.

[60]  Michitaka Hirose,et al.  Simulation and presentation of curved surface in virtual reality environment through surface display , 1995, Proceedings Virtual Reality Annual International Symposium '95.

[61]  Woohun Lee,et al.  Shade Pixel , 2008, SIGGRAPH '08.

[62]  Faisal Taher,et al.  ShapeClip: Towards Rapid Prototyping with Shape-Changing Displays for Designers , 2015, CHI.

[63]  Roel Vertegaal,et al.  An inflatable hemispherical multi-touch display , 2010, TEI.

[64]  Hiroshi Ishii,et al.  TRANSFORM: Embodiment of "Radical Atoms" at Milano Design Week , 2015, CHI Extended Abstracts.

[65]  Tamás D. Gedeon,et al.  ForceForm: a dynamically deformable interactive surface , 2013, ITS.