Plio-Pleistocene Mediterranean bathyal echinoids: evidence of adaptation to psychrospheric conditions and affinities with Atlantic assemblages

Palaeontological evidences of autochthonous deep-water echinoids are so rare that the well-preserved assemblage herein described from the Plio-Pleistocene of Capo Milazzo (NE Sicily) provide an important opportunity to investigate the biodiversity of the bathyal echinoids in the Mediterranean late Cenozoic. The low diversity fauna studied is dominated by Cidaris margaritifera, Histocidaris sicula and Stirechinus scillae, which are species closely related to Recent echinoids today confined to the western Atlantic deep bottoms. The echinoid assemblages of Capo Milazzo and of the Plio-Pleistocene Argille Azzurre Formation (Italy) share a number of species, most of which are known also from shallow water Plio-Pleistocene deposits and the presentday Mediterranean; C. margaritifera is the only strictly bathyal echinoid that occurs in both formations. The palaeoecological study of these echinoids indicates an epibenthic way of life on muddy bottoms, in deep waters with psychrospheric conditions. The following species from the Argille Azzurre are interpreted as strictly bathyal: Histocidaris rosaria, Schizaster braidensis and Schizaster ovatus (transferred into the genus Holanthus). The modern Mediterranean (impoverished) deep-water echinoid assemblage has north-eastern Atlantic affinities and, with the exception of Holanthus expergitus, all the Mediterranean species found at bathyal depth are eurybathic, as they live also in shelf settings. In contrast, the bathyal echinoids of Capo Milazzo show strongest affinities with strictly deep-water western Atlantic species, particularly those of the Caribbean area. They vanished from the Mediterranean during the Quaternary due to the loss of psychrospheric conditions. Based on the Punta Mazza section, dated by nannofossils and data from literature, their stratigraphic range at Capo Milazzo is late Piacenzian-Calabrian. Enrico Borghi, Società Reggiana di Scienze Naturali, Via Tosti, 1 42100 Reggio Emilia, Italy, e.borghi@corghi.com Vittorio Garilli (corresponding author), Paleosofia-APEMA Research & Educational Service, Via Alla Falconara 34 90136 Palermo, Italy, vittoriogarilli@apema.eu, vittorio.garilli@paleosofia.it Sergio Bonomo, Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Calata Porta di Massa, Interno Porto di Napoli, 80133 Naples, Italy, sergio.bonomo@cnr.it

[1]  W. Emery,et al.  Water Types and Water Masses , 2019, Encyclopedia of Ocean Sciences.

[2]  William,et al.  Calcareous nannofossils from Nal'chik (Northwest Caucasus) , 2013 .

[3]  V. Garilli Mediterranean Quaternary interglacial molluscan assemblages: Palaeobiogeographical and palaeoceanographical responses to climate change , 2011 .

[4]  M. Agate,et al.  Late Quaternary high uplift rates in northeastern Sicily: evidence from calcareous nannofossils and benthic and planktonic foraminifera , 2011, Facies.

[5]  A. Smith,et al.  The phylogeny and classification of post-Palaeozoic echinoids , 2010 .

[6]  H. Clark,et al.  Hawaiian and Other Pacific Echini ... , 2010 .

[7]  A. Gale,et al.  The pre-Messinian deep-sea Neogene echinoid fauna of the Mediterranean: Surface productivity controls and biogeographical relationships , 2009 .

[8]  E. Forbes A History of British Starfishes: And Other Animals of the Class Echinodermata , 2008 .

[9]  M. Reuter,et al.  Biogeographic responses to geodynamics: A key study all around the Oligo–Miocene Tethyan Seaway ☆ , 2007 .

[10]  J. Nebelsick,et al.  The encrustation of fossil and recent sea‐urchin tests: ecological and taphonomic significance , 2007 .

[11]  D. Bobori,et al.  The echinoderm (Deuterostomia) fauna of the Aegean Sea, and comparison with those of the neighbouring seas , 2007 .

[12]  Rich Mooi Catalogus Fossilium Austriae. Band 2. Echinoidea Neogenica , 2006, Journal of Paleontology.

[13]  P. Renda,et al.  Elevation of the last interglacial highstand in Sicily (Italy): A benchmark of coastal tectonics , 2006 .

[14]  R. Favara,et al.  Integrated neotectonic and morphometric analysis of northern Sicily , 2006 .

[15]  S. Donovan,et al.  Lower Miocene echinoderms of Jamaica, West Indies , 2005 .

[16]  A. Vertino,et al.  Enhanced biodiversity in the deep: Early Pleistocene coral communities from southern Italy , 2005 .

[17]  E. Stefano,et al.  CALCAREOUS NANNOFOSSIL EVENTS IN THE LOWER-MIDDLE PLEISTOCENE TRANSITION AT THE MONTALBANO JONICO SECTION AND ODP SITE 964: CALIBRATION WITH ISOTOPE AND SAPROPEL STRATIGRAPHY , 2004 .

[18]  P. Geistdoerfer,et al.  The Mediterranean deep-sea fauna: historical evolution, bathymetric variations and geographical changes , 2004, q-bio/0507003.

[19]  R. L. Perna The Quaternary deep-sea protobranch fauna from the Mediterranean: composition, depth-related distribution and changes , 2003 .

[20]  I. Raffi Revision of the early-middle pleistocene calcareous nannofossil biochronology (1.75–0.85 Ma) , 2002 .

[21]  M. Taviani THE MEDITERRANEAN BENTHOS FROM LATE MIOCENE UP TO PRESENT: TEN MILLION YEARS OF DRAMATIC CLIMATIC AND GEOLOGIC VICISSITUDES IL BENTHOS DEL MEDITERRANEO DAL MIOCENE SUPERIORE AD OGGI: DIECI MILIONI DI ANNI DI COMPLESSE VICENDE CLIMATICHE E GEOLOGICHE , 2002 .

[22]  H. Niebler,et al.  Southern Ocean Pleistocene calcareous nannofossil events: Calibration with isotope and geomagnetic stratigraphies , 2000 .

[23]  Amos Nur,et al.  The formation of Mount Etna as the consequence of slab rollback , 1999, Nature.

[24]  R. Gersonde,et al.  Pleistocene fluctuations in the Agulhas Current Retroflection based on the calcareous plankton record , 1999 .

[25]  Alex D. Rogers,et al.  The Biology of Lophelia pertusa (Linnaeus 1758) and Other Deep‐Water Reef‐Forming Corals and Impacts from Human Activities. , 1999 .

[26]  M. Philippe Les échinides miocènes du bassin du Rhône : révision systématique. Première partie , 1998, Nouvelles archives du Muséum d'histoire naturelle de Lyon.

[27]  A. Vazzana Malacofauna batiale del Pleistocene inferiore del Vallone Catrica (Reggio Calabria, Italia) , 1996 .

[28]  P. Weaver,et al.  Calculating erosion by deep-sea turbidity currents during initiation and flow , 1993, Nature.

[29]  N. Shackleton,et al.  Plio‐Pleistocene Nannofossil Biostratigraphy and Calibration to Oxygen Isotope Stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677 , 1993 .

[30]  Wuchang Wei Calibration of Upper Pliocene‐Lower Pleistocene Nannofossil Events with Oxygen Isotope Stratigraphy , 1993 .

[31]  D. Castradori Calcareous nannofossil biostratigraphy and biochronology in eastern Mediterranean deep-sea cores , 1993 .

[32]  M. Taviani,et al.  The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species? , 1992 .

[33]  T. Sato A stratigarphically significant new species of the calcareous nannofossil Reticulofenestra asanoi , 1992 .

[34]  B. Greenstein Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea) , 1992, Paleobiology.

[35]  S. Kidwell,et al.  Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds , 1990, Paleobiology.

[36]  E. Fois Stratigraphy and palaeogeography of the Capo Milazzo area (NE Sicili, Italy): clues to the evolution of the southern margin of the Tyrrhenian Basin during the Neogene , 1990 .

[37]  I. Raffi,et al.  Pliocene-Pleistocene Calcareous Nannofossil Distribution Patterns in the Western Mediterranean , 1990 .

[38]  E. Fols LA SUCCESSIONE NEOGENICA DI CAPO MILAZZO (SICILIA NORD-ORIENTALE) , 1990 .

[39]  A. Villari,et al.  Le specie malacologiche di Salice (Messina) istituite da Giuseppe Seguenza , 1989 .

[40]  A. Colella,et al.  Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Palaeostrait, Plio-Pleistocene, southern Italy). , 1988 .

[41]  Domenico Rio,et al.  Biostratigrafia a nannofossili, biocronologia e cronostratigrafia della serie del Torrente Tiepido (Subappennino Emiliano - Provincia di Modena). , 1980 .

[42]  Domenico Rio,et al.  Biostratigrafia a nannofossili del Siciliano. , 1980 .

[43]  Keith D. Serafy Echinoids (Echinodermata: Echinoidea) , 1979 .

[44]  A. Smith A functional classification of the coronal pores of regular echinoids , 1978 .

[45]  D. Bukry Coccolith Stratigraphy, Eastern Equatorial Pacific, Leg 16, Deep Sea Drilling Project , 1973 .

[46]  W. Ryan,et al.  Late Miocene Desiccation of the Mediterranean , 1973, Nature.

[47]  G. Y. Craig,et al.  Ecology and Palaeoecology of Marine Environments , 1972 .

[48]  H. G. Bronn Italiens Tertiär-Gebilde und deren organische Einschlüsse , 1971 .

[49]  Jr. Stefan Gartner Correlation of Neogene Planktonic Foraminifer and Calcareous Nannofossil Zones , 1969 .

[50]  F. C. Fuglister Average Temperature and Salinity at a Depth of 200 Meters in the North Atlantic , 1954 .

[51]  E. Kamptner Uber den submikroskopischen Aufbau der Coccolithen , 1951 .

[52]  J. G. A Monograph of the Echinoidea , 1936, Nature.

[53]  F. B. Les Échinodermes des mers d'Europe , 1925, Nature.

[54]  T. Mortensen XVI.—On some points in the nomenclature of Echinoids , 1910 .

[55]  G. Cotteau Description des Echinides recueillis par M. Lovisato dans le Miocene de la Sardaigne , 1895 .

[56]  A. Agassiz Preliminary report on the Echini , 1880 .

[57]  Wyville Thomson XXI. On the echinoidea of the ’porcupine‘ deep-sea dredging-expeditions , 1874, Philosophical Transactions of the Royal Society of London.

[58]  S. Lovén Études sur les Échinoïdées , 1874 .

[59]  R. E. Die Echinoiden der oesterreichisch-ungarischen oberen Tertiarablägerungen , 1872, Nature.

[60]  A. Agassiz Preliminary report on the Echini and star fishes, dredged in deep water between Cuba and the Florida Reef by L.F. de Pourtales , 1869 .

[61]  Thomas. Wright On the Fossil Echinidæ of Malta , 1864, Quarterly Journal of the Geological Society of London.

[62]  J. Gray An attempt to divide the Echinida, or Sea Eggs, into natural families , 1825 .