Shape classification using complex network and Multi-scale Fractal Dimension

Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method, and its results are compared to traditional shape analysis methods found in literature.

[1]  Wen-Yen Wu,et al.  Detecting the Dominant Points by the Curvature-Based Polygonal Approximation , 1993, CVGIP Graph. Model. Image Process..

[2]  A. Rapoport Spread of information through a population with socio-structural bias: I. Assumption of transitivity , 1953 .

[3]  J. Overall,et al.  Applied multivariate analysis , 1983 .

[4]  Miroslaw Bober,et al.  Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization , 2011, Computational Imaging and Vision.

[5]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[6]  D. Marchette Random Graphs for Statistical Pattern Recognition , 2004 .

[7]  J S Kim,et al.  Fractality in complex networks: critical and supercritical skeletons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  P. Stadler,et al.  Centers of complex networks. , 2003, Journal of theoretical biology.

[9]  A. Rapoport Contribution to the theory of random and biased nets , 1957 .

[10]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[11]  Zhuowen Tu,et al.  Improving Shape Retrieval by Learning Graph Transduction , 2008, ECCV.

[12]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[13]  Paul J. Flory,et al.  Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1 , 1941 .

[14]  C. Tricot Curves and Fractal Dimension , 1994 .

[15]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  S. Havlin,et al.  How to calculate the fractal dimension of a complex network: the box covering algorithm , 2007, cond-mat/0701216.

[17]  Mohan S. Kankanhalli,et al.  Shape Measures for Content Based Image Retrieval: A Comparison , 1997, Inf. Process. Manag..

[18]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[20]  Longin Jan Latecki,et al.  Path Similarity Skeleton Graph Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[22]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[23]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[24]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[25]  M. Zhenjiang Zernike moment-based image shape analysis and its application , 2000 .

[26]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[27]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[28]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[29]  Odemir Martinez Bruno,et al.  Fractal dimension applied to plant identification , 2008, Inf. Sci..

[30]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[31]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[32]  O. Bruno,et al.  Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with Passiflora (Passifloraceae) , 2005 .

[33]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[35]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[37]  A. Rapoport NETS WITH DISTANCE BIAS , 1951 .

[38]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[39]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[40]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[41]  Luciano da Fontoura Costa,et al.  Texture Discrimination Using HierarchicalComplex Networks , 2008 .

[42]  N. Lam,et al.  Multi-Scale Fractal Analysis of Image Texture and Pattern , 1999 .

[43]  Stanislaw Osowski,et al.  Fourier and wavelet descriptors for shape recognition using neural networks - a comparative study , 2002, Pattern Recognit..

[44]  B. Bollobás The evolution of random graphs , 1984 .

[45]  Longin Jan Latecki,et al.  Skeleton-Based Shape Classification Using Path Similarity , 2008, Int. J. Pattern Recognit. Artif. Intell..

[46]  P. Wintz,et al.  An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors , 1980 .

[47]  C.-C. Jay Kuo,et al.  Wavelet descriptor of planar curves: theory and applications , 1996, IEEE Trans. Image Process..

[48]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[49]  Luciano da Fontoura Costa Complex Networks, Simple Vision , 2004 .

[50]  Lucas Antiqueira,et al.  Strong correlations between text quality and complex networks features , 2007 .

[51]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .