Assessing the effects of body weight on subchondral bone formation with quantitative 18F-sodium fluoride PET

[1]  T. Werner,et al.  18F-FDG-PET/CT in measuring volume and global metabolic activity of thigh muscles: a novel CT-based tissue segmentation methodology , 2019, Nuclear medicine communications.

[2]  T. Werner,et al.  Comparison of methods of quantifying global synovial metabolic activity with FDG‐PET/CT in rheumatoid arthritis , 2019, International journal of rheumatic diseases.

[3]  A. Alavi,et al.  Global disease score (GDS) is the name of the game! , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  T. Werner,et al.  The overall impact of amyloid PET on diagnosis and management of dementia , 2019 .

[5]  A. Alavi,et al.  Metastatic Seeding Attacks Bone Marrow, Not Bone: Rectifying Ongoing Misconceptions. , 2019, PET clinics.

[6]  T. Werner,et al.  Evolving Role of PET/CT-MRI in Assessing Muscle Disorders. , 2019, PET clinics.

[7]  T. Werner,et al.  Applications of PET Imaging in the Evaluation of Musculoskeletal Diseases Among the Geriatric Population. , 2018, Seminars in nuclear medicine.

[8]  T. Werner,et al.  Efficacy of 18F-FDG and 18F-NaF PET/CT imaging: A novel semi-quantitative assessment of the effects of age and obesity on hip joint inflammation and bone degeneration. , 2018, Hellenic journal of nuclear medicine.

[9]  S. Hess,et al.  Cancer metastasizes to the bone marrow and not to the bone: time for a paradigm shift! , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[10]  C. Simpfendorfer Radiologic Approach to Musculoskeletal Infections. , 2017, Infectious disease clinics of North America.

[11]  Tomoyuki Saito,et al.  Differences in sodium fluoride-18 uptake in the normal skeleton depending on the location and characteristics of the bone , 2017, Nuklearmedizin.

[12]  R. Selles,et al.  Accuracy of magnetic resonance imaging to detect cartilage loss in severe osteoarthritis of the first carpometacarpal joint: comparison with histological evaluation , 2017, Arthritis Research & Therapy.

[13]  S. Majumdar,et al.  Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI , 2016, Molecular imaging.

[14]  S. Houshmand,et al.  Evolving Role of Molecular Imaging with 18F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism , 2016, Current Osteoporosis Reports.

[15]  U. Tateishi,et al.  Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip , 2015, Nuclear medicine communications.

[16]  Puneet Bhargava,et al.  Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. , 2014, Radiographics : a review publication of the Radiological Society of North America, Inc.

[17]  D. Cintra,et al.  Obesity versus osteoarthritis: beyond the mechanical overload , 2014, Einstein.

[18]  Beth S. Lee,et al.  Mechanosignaling in bone health, trauma and inflammation. , 2014, Antioxidants & redox signaling.

[19]  F. Berenbaum,et al.  Is osteoarthritis a metabolic disease? , 2013, Joint, bone, spine : revue du rhumatisme.

[20]  David B. Burr,et al.  Bone remodelling in osteoarthritis , 2012, Nature Reviews Rheumatology.

[21]  Liane Oehme,et al.  A method for model-free partial volume correction in oncological PET , 2012, EJNMMI Research.

[22]  F Hofheinz,et al.  Automatic volume delineation in oncological PET , 2011, Nuklearmedizin.

[23]  Liane Oehme,et al.  Automatische Volumenabgrenzung in der onkologischen PET – Bewertung eines entsprechenden Software-Werkzeugs und Vergleich mit manueller Abgrenzung anhand klinischer Datensätze , 2012 .

[24]  D J Hunter,et al.  The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. , 2012, Osteoarthritis and cartilage.

[25]  Farshid Guilak,et al.  Biomechanical factors in osteoarthritis. , 2011, Best practice & research. Clinical rheumatology.

[26]  F. Berenbaum,et al.  Osteoarthritis: an update with relevance for clinical practice , 2011, The Lancet.

[27]  Jay J Cao Effects of obesity on bone metabolism , 2011, Journal of orthopaedic surgery and research.

[28]  Abass Alavi,et al.  Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. , 2011, Hellenic journal of nuclear medicine.

[29]  S Kirschner,et al.  EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis , 2009, Annals of the rheumatic diseases.

[30]  T. Laor,et al.  MR imaging insights into skeletal maturation: what is normal? , 2009, Radiology.

[31]  A. Iagnocco,et al.  Ultrasound in the study and monitoring of osteoarthritis. , 2008, Osteoarthritis and cartilage.

[32]  Gheorghe Luta,et al.  Lifetime risk of symptomatic knee osteoarthritis. , 2008, Arthritis and rheumatism.

[33]  A. Alavi,et al.  Evolving concept of imaging bone marrow metastasis in the twenty-first century: critical role of FDG-PET , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[34]  M. Kricun Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions , 2004, Skeletal Radiology.

[35]  D. Swagerty,et al.  Radiographic assessment of osteoarthritis. , 2001, American family physician.

[36]  J. Barrio,et al.  Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[37]  A. Rahmouni,et al.  Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. , 1990, Radiology.

[38]  J. S. Laughlin,et al.  Depletion of 18F from blood flowing through bone. , 1970, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.