Soliton and Periodic solutions of the Short Pulse Model Equation

The short pulse (SP) equation is a novel model equation describing the propagation of ultra-short optical pulses in nonlinear media. This article reviews some recent results about the SP equation. In particular, we focus our attention on its exact solutions. By using a newly developed method of solution, we derive multisoliton solutions as well as 1-and 2-phase periodic solutions and investigate their properties.

[1]  Yoshimasa Matsuno,et al.  Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations , 2006 .

[2]  Christopher K. R. T. Jones,et al.  Ultra-short pulses in linear and nonlinear media , 2004, nlin/0408020.

[3]  J. Rothenberg,et al.  Space - time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. , 1992, Optics letters.

[4]  Mauro Luiz Rabelo,et al.  On Equations Which Describe Pseudospherical Surfaces , 1989 .

[5]  S. E. Trullinger,et al.  Classical excitation energies for a finite‐length sine‐Gordon system , 1982 .

[6]  C. E. Wayne,et al.  Propagation of ultra-short optical pulses in cubic nonlinear media , 2004 .

[7]  Sergei Sakovich,et al.  The Short Pulse Equation Is Integrable , 2005 .

[8]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[9]  Akira Nakamura,et al.  A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. : II. Exact One- and Two-Periodic Wave Solution of the Coupled Bilinear Equations , 1980 .

[10]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[11]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[12]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[13]  E. J. Parkes,et al.  Some periodic and solitary travelling-wave solutions of the short pulse equation , 2008 .

[14]  A. Scott,et al.  Exact solutions of the sine‐Gordon equation describing oscillations in a long (but finite) Josephson junction , 1978 .

[15]  Yoshimasa Matsuno,et al.  Bilinear Transformation Method , 1984 .

[16]  Akira Nakamura,et al.  A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution , 1979 .

[17]  J. Zagrodzinski Dispersion equations and a comparison of different quasi-periodic solutions of the sine-Gordon equation , 1982 .

[18]  G. Lamb Elements of soliton theory , 1980 .

[19]  G. Lamb Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .

[20]  Jeffrey Rauch,et al.  Diffractive short pulse asymptotics for nonlinear wave equations , 2000 .

[21]  Alexander L. Gaeta,et al.  Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. , 1998 .

[22]  J. C. Brunelli The short pulse hierarchy , 2005, nlin/0601015.

[23]  Sergei Sakovich,et al.  LETTER TO THE EDITOR: Solitary wave solutions of the short pulse equation , 2006 .

[24]  Yoshimasa Matsuno,et al.  Periodic solutions of the short pulse model equation (Mathematical Physics and Application of Nonlinear Wave Phenomena) , 2008 .

[25]  Ryogo Hirota,et al.  Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons , 1972 .

[26]  J. C. Brunelli The bi-Hamiltonian structure of the short pulse equation , 2006, nlin/0601014.

[27]  T. Kofané,et al.  On two-loop soliton solution of the Schäfer-Wayne short-pulse equation using hirota's method and Hodnett-Moloney approach , 2007 .

[28]  Richard Beals,et al.  Bäcklund Transformations and Inverse Scattering Solutions for Some Pseudospherical Surface Equations , 1989 .