Marrow stromal cells embedded in alginate for repair of osteochondral defects.

Articular cartilage defects of sufficient size ultimately degenerate with time, leading to arthritic changes. Numerous strategies have been used to address full-thickness cartilage defects, yet none thus far has been successful in restoring the articular surface to its preinjury state. We compared the effects of agarose, alginate, and type I collagen gels on the expression of cartilage-specific markers from rabbit marrow stromal cells and then assessed the in vivo effects of cells seeded in alginate beads on the repair of full-thickness osteochondral defects in the rabbit model. Marrow aspirates from rabbits were cultured and the stromal population selected. Marrow stromal cells were then placed in either 1.2% w/v alginate, type I collagen gels (3 mg/mL), or 0.5% agarose suspension culture. After 2, 5, 10, and 20 days in culture, the RNA was extracted and analyzed by reverse transcription polymerase chain reaction for the cartilage-specific markers aggrecan and type II collagen. The strongest increase in aggrecan and type II collagen gene expression was found in the agarose suspension followed by alginate; type I collagen gels induced the lowest levels. Alginate beads were chondrogenic and maintained their size and consistency over time in culture, whereas the cell-seeded collagen gels invariably contracted. Full-thickness defects measuring 3 x 6 mm x 3 mm deep were then created in the medial femoral condyles of rabbit knees and filled with alginate beads, alginate beads seeded with stromal cells, or left empty. Alginate beads containing stromal cells remained within the defects and progressively filled the defects with regenerate tissue. Histologic analysis showed viable, phenotypically chondrogenic cells in the defects. The matrix stained positive with safranin O, indicating proteoglycan synthesis, and bonding between the regenerate and host tissue was excellent. We have shown quantitative differences in the chondrogenic effects of the biomaterials tested. Alginate induces the chondrogenic phenotype in marrow stromal cells in vitro, and possesses the necessary physical characteristics and handling properties to support cells and serve as a carrier to fill full-thickness osteochondral defects in vivo.

[1]  E. Thonar,et al.  Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. , 1996, The American journal of physiology.

[2]  T Ochi,et al.  Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. , 1989, The Journal of bone and joint surgery. British volume.

[3]  D K MacCallum,et al.  Culture and growth characteristics of chondrocytes encapsulated in alginate beads. , 1989, Connective tissue research.

[4]  J. Vacanti,et al.  De Novo Cartilage Generation Using Calcium Alginate‐Chondrocyte Constructs , 1996, Plastic and reconstructive surgery.

[5]  P. Buma,et al.  Culture of chondrocytes in alginate and collagen carrier gels. , 1995, Acta orthopaedica Scandinavica.

[6]  D Amiel,et al.  Osteochondral Repair Using Perichondrial Cells: A 1-Year Study in Rabbits , 1997, Clinical orthopaedics and related research.

[7]  W. Akeson,et al.  Resurfacing of the knee with fresh osteochondral allograft. , 1989, The Journal of bone and joint surgery. American volume.

[8]  Mankin Hj,et al.  The reaction of articular cartilage to injury and osteoarthritis (first of two parts). , 1974 .

[9]  E. Thonar,et al.  Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. , 1994, Journal of cell science.

[10]  A. Poole,et al.  Chondrogenesis in periosteal explants. An organ culture model for in vitro study. , 1994, The Journal of bone and joint surgery. American volume.

[11]  D Amiel,et al.  Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. , 1995, Journal of biomedical materials research.

[12]  S W O'Driscoll,et al.  The Repair of Major Osteochondral Defects in Joint Surfaces by Neochondrogenesis with Autogenous Osteoperiosteal Grafts Stimulated by Continuous Passive Motion: An Experimental Investigation in the Rabbit , 1986, Clinical orthopaedics and related research.

[13]  H J Mankin,et al.  The reaction of articular cartilage to injury and osteoarthritis (second of two parts). , 1974, The New England journal of medicine.

[14]  C. Wirth,et al.  Techniques of cartilage growth enhancement: a review of the literature. , 1996, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[15]  E. Thonar,et al.  Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. , 1992, Matrix.

[16]  Arnold I. Caplan,et al.  Overview: Principles of Cartilage Repair and Regeneration , 1997 .

[17]  H. Mankin,et al.  The response of articular cartilage to mechanical injury. , 1982, The Journal of bone and joint surgery. American volume.

[18]  M. Pitman,et al.  A comparison of abrasion burr arthroplasty and subchondral drilling in the treatment of full-thickness cartilage lesions in the rabbit. , 1996, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[19]  A. Grodzinsky,et al.  Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[20]  A I Caplan,et al.  Principles of cartilage repair and regeneration. , 1997, Clinical orthopaedics and related research.

[21]  H. J. Mankin,et al.  Instructional Course Lectures, The American Academy of Orthopaedic Surgeons - Articular Cartilage. Part II: Degeneration and Osteoarthrosis, Repair, Regeneration, and Transplantation*† , 1997 .

[22]  J. Buckwalter,et al.  Restoration of Injured or Degenerated Articular Cartilage , 1994, The Journal of the American Academy of Orthopaedic Surgeons.

[23]  R. Salter,et al.  The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. , 1986, The Journal of bone and joint surgery. American volume.

[24]  C. Ohlsson,et al.  Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. , 1994, The New England journal of medicine.

[25]  C. Ohlsson,et al.  Rabbit Articular Cartilage Defects Treated With Autologous Cultured Chondrocytes , 1996, Clinical orthopaedics and related research.

[26]  K. Pritzker,et al.  Fresh small-fragment osteochondral allografts. Long-term follow-up study on first 100 cases. , 1985, Clinical orthopaedics and related research.