Exact boundary observability for nonautonomous quasilinear wave equations

By means of a direct and constructive method based on the theory of semiglobal $C^2$ solution, the local exact boundary observability is shown for nonautonomous 1-D quasilinear wave equations. The essential difference between nonautonomous wave equations and autonomous ones is also revealed.

[1]  Irena Lasiecka,et al.  Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems , 1989 .

[2]  Exact boundary controllability for non‐autonomous quasilinear wave equations , 2007 .

[3]  Zhen Lei,et al.  Local Exact Boundary Controllability for Nonlinear Wave Equations , 2007, SIAM J. Control. Optim..

[4]  Zhuangyi Liu,et al.  A spectral approach to the indirect boundary control of a system of weakly coupled wave equations , 2008 .

[5]  Tatsien Li,et al.  SEMI-GLOBAL C1 SOLUTION TO THE MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS , 2001 .

[7]  Enrique Zuazua,et al.  On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials , 2008 .

[8]  J. Coron Control and Nonlinearity , 2007 .

[9]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[10]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[11]  Ta-Tsien Li Global classical solutions for quasilinear hyperbolic systems , 1994 .

[12]  Oleg Yu. Imanuvilov,et al.  On Carleman estimates for hyperbolic equations , 2002 .

[13]  Exact Boundary Controllability for 1-D Quasilinear Wave Equations , 2006 .

[14]  Xu Zhang,et al.  Explicit Observability Inequalities for the Wave Equation with Lower Order Terms by Means of Carleman Inequalities , 2000, SIAM J. Control. Optim..

[15]  Enrique Zuazua,et al.  Controllability and Observability of Partial Differential Equations: Some Results and Open Problems , 2007 .

[16]  Lixin Yu,et al.  Exact Boundary Controllability for 1-D Quasilinear Wave Equations , 2006, SIAM J. Control. Optim..

[17]  Exact boundary and distributed controllability of radial damped wave equation , 1998 .

[18]  Zhiqiang Wang,et al.  Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems* , 2006 .

[19]  Enrique Zuazua,et al.  Exact controllability for semilinear wave equations in one space dimension , 1993 .

[20]  Lita-Tsien(Lidaqian),et al.  SEMI-GLOBAL C^1 SOLUTION TO THE MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS , 2001 .

[21]  Nicolas Burq,et al.  Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .

[22]  Enrique Zuazua,et al.  Exact controllability for the semilinear wave equation , 1990 .

[23]  Peng-Fei Yao,et al.  On The Observability Inequalities for Exact Controllability of Wave Equations With Variable Coefficients , 1999 .

[24]  Une nouvelle famille de multiplicateurs et applications à la contrôlabilité exacte de l'équation d'ondes , 1998 .

[25]  Marius Tucsnak,et al.  A spectral approach for the exact observability of infinite dimensional systems with skew-adjoint generator. , 2005 .

[26]  STATE OBSERVATION PROBLEM FOR A CLASS OF SEMI-LINEAR HYPERBOLIC SYSTEMS , 1999 .

[27]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .