On explicit formulas of the principal matrix pth root by polynomial decompositions

Abstract We present some explicit formulas for calculating the principal p th root of a square matrix. The main tools are based on various polynomial decompositions of the principal matrix p th root and well-known properties of the linear recursive sequences.

[1]  Michael S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  J. L. Silván-Cárdenas Sub-pixel remote sensing for mapping and modelling invasive tamarix: A case study in West Texas, 1993--2005 , 2009 .

[3]  Matthew I. Smith,et al.  A Schur Algorithm for Computing Matrix pth Roots , 2002, SIAM J. Matrix Anal. Appl..

[4]  Stephen S.-T. Yau,et al.  More explicit formulas for the matrix exponential , 1997 .

[5]  L. Verde-Star Functions of matrices , 2005 .

[6]  Bruno Iannazzo,et al.  On the Newton Method for the Matrix P th Root , 2006, SIAM J. Matrix Anal. Appl..

[7]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[8]  R. Ben Taher,et al.  Some explicit formulas for the polynomial decomposition of the matrix exponential and applications , 2002 .

[9]  M. Rachidi,et al.  Powers of Matrices by Density and Divided Differences , 2009 .

[10]  Nicholas Ayache,et al.  Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations - Application to the registration of histological slices , 2005, Medical Image Anal..

[11]  J. Abderramán Marrero,et al.  On explicit formulas for the principal matrix logarithm , 2013, Appl. Math. Comput..

[12]  M. Rachidi,et al.  Linear recurrence relations in the algebra of matrices and applications , 2001 .

[13]  M. Rachidi,et al.  On the matrix powers and exponential by the r-generalized Fibonacci sequences methods: the companion matrix case , 2003 .